(干扰素β、醋酸格拉替雷、特立氟胺、富马酸二甲酯)或高效药物。然后对患者进行监测,并可能根据频繁的临床复发或 MRI 活动(或两者兼有)将他们的 MS 重新归类为更活跃的疾病。疾病活动的标准基于 MRI(白质病变)和临床证据(复发和残疾进展)。临床医生会定性评估 MRI 证据。使用萎缩标准化 (SIENA) 分析的结构图像评估是一种经过验证的自动分析方法,但仅用于研究环境并仅评估脑萎缩。如果服用低效药物的患者继续出现疾病活动,则考虑改用更高效的药物(奥瑞珠单抗、克拉屈滨、那他珠单抗、芬戈莫德、奥法木单抗、阿仑单抗)。
纳武单抗是一种抗程序性死亡-1 (PD-1) 受体单克隆抗体,已被证明可有效治疗铂类耐药性转移性头颈部鳞状细胞癌。免疫相关不良事件 (irAE) 是 PD-1 抑制剂众所周知的并发症。同时,细胞因子释放综合征 (CRS),一种危及生命的免疫相关不良事件,很少因纳武单抗单药治疗而发生。在这里,我们报告了一例 65 岁男性的病例,他患有隐匿性原发性头颈部鳞状细胞癌,并出现了纳武单抗相关的晚发型 CRS 复发。患者入院时出现疲劳、发烧、低血压和呼吸窘迫的症状。血清白细胞介素 6 和铁蛋白水平升高支持 CRS 的诊断,患者对大剂量甲基泼尼松龙反应良好。CRS 在类固醇减量期间复发,同时肿瘤负担增加;然而,通过增加类固醇剂量可以成功控制。早期发现和使用类固醇治疗对于 CRS 的管理至关重要。
对热塑性复合材料的需求不断增加,因为这些材料在热固性工具中具有许多优势,例如高韧性,较长的存储时间,易于修复和回收,以及具有热成型和热量焊接的能力。但是,使用液体复合成型技术制造热塑性复合零件(例如树脂转移成型,真空辅助树脂转移成型。。。 )在熔融加工的情况下通常很棘手,在熔体过程中,由于热塑性塑料的高融化粘度,因此应选择高温和压力以浸渍纤维增强。可以通过反应性处理来克服这些问题,而低粘度单或寡聚前体首先浸渍了纯净的预成型,而热塑性基质的聚合则发生在原位。本文绘制了关于连续纤维增强基于丙烯酸的反应性热塑性塑料制造特征的最新技术(例如聚合甲基丙烯酸酯(PMMA)(PMMA)越来越流行。技术的甲基丙烯酸酯单体的原位聚合技术,流变特性和聚合动力学的表征和建模以及一些与制造相关的问题(例如聚合收缩)进行了综述。还引入了连续钢筋复合材料和潜在工业应用的不同制造技术中使用反应性PMMA的特定特征。最后,提出了学术研究和工业发展的一些观点。
由于一维线性通道的扩散限制,纳米沸石的合成和催化应用已被证明是提高各种扩散限制烃转化性能的有效策略 [7,8]。由于废物消耗和污染,工业的增长对全球环境构成了严重威胁。应做出更多努力来减少环境污染。解决这一重大问题的有效方法之一是光催化 [9]。尽管许多类型的材料被用于催化,如硫属化物、金属氧化物和钙钛矿 [10,11]。沸石的多孔笼状结构有许多应用,包括气体检测和清洁 [12,13]。沸石可以通过多种方法成功合成,例如盐化、密闭空间合成和微波合成法 [14,15]。已经报道了用微波法制备的纳米级林德 L 型沸石。由于这些金属氧化物和钙钛矿的稳定性较差,研究人员发现沸石是光催化的主要候选材料,因为它的二次氢解程度较低,在正辛烷芳构化中对 C-8 芳烃的选择性较高 [16]。然而,微波合成法被认为耗能,不适合工业应用和技术催化 [17]。因此,开发一种经济高效、易于扩大规模的方法来制备具有改进催化性能的纳米级林德 L 型沸石是极其必要的。幸运的是,一些研究人员观察到加入少量钡可以促进纳米级林德 L 型沸石的形成 [18]。据我们所知,Ba 对林德 L 型结晶过程的影响的解释仍不清楚。全面了解形成过程对于更科学地调节沸石晶体尺寸也具有重要意义。此外,林德 L 型沸石晶体尺寸对正构烷烃芳构化的影响还需要进一步系统研究。Bernard 等人首次报道了非酸性 0.71 nm 一维 12 元环通道的林德 L 型沸石在负载铂的情况下表现出优异的烷烃芳构化性能。通过水热法成功合成了纳米尺寸的林德 L 型沸石[19,20]。林德 L 型沸石具有六方晶体结构(空间群 P-6/mmm),晶胞常数 a = b = 18.4 和 c = 7.5 [21,22]。林德 L 型沸石在过去 20 年中引起了广泛关注
a Clinical Investigation Center CIC1436, Department of Clinical Pharmacology and Neurosciences, Parkinson Expert Centre and NeuroToul Center of Excellence in Neurodegeneration (COEN) of Toulouse, INSERM, University of Toulouse 3, CHU of Toulouse, Toulouse, France b French Reference Center for Multiple System Atrophy, Neurology Department, Toulouse University Hospital, Toulouse, France c Department of Neuroscience “都灵大学的丽塔·李维尼·蒙塔尔奇尼(Rita Levi Montalcini”,通过Cherasco 15,10126,意大利都灵D s neurolologia 2u,Aou citt o della salute e delle e dellute e della e della e della e della e della e della e della e della s scienza,都灵,意大利E Parkinson E Parkinson中心(Cemand),医学,外科和牙科系“ Scuola Medica Salernitana”,萨尔诺斯大学,Baronissi,SA,84081,意大利G高级医学和外科科学系,坎帕尼亚大学,“ Luigi vanvitelli”,Luigi Vanvitelli大学,纳波利,纳波利,纳波利,纳波利,纳波利,艾尔·纳波利大学(DIB)意大利博洛尼亚I irccs iStituto delle scienze scienze di di di bologna,经阿尔图拉(Altura),3,40139,意大利博洛尼亚(Bolologna),意大利j神经病学系,圣塔基亚拉医院(Santa Chiara Hospital)意大利圣马蒂诺热那亚
最近,人们对热塑性复合材料的兴趣又重新燃起,这主要是由于自动化技术的进步,通过提高制造速度,可以大幅降低成本,同时减少与热固性复合材料制造相关的零件数量和能耗。与此同时,新的材料系统已经开发出来,热塑性复合材料预浸料的质量也随着时间的推移而提高。此外,热塑性复合材料的室温保质期几乎是无限的,生产废料可以重复使用,报废零件可以回收利用,为更可持续的运营和下游市场提供了机会。这些因素促使人们对航空航天、汽车和其他工业应用领域中热塑性复合材料的先进技术产生了浓厚的兴趣。
适用于所有系统间关系,除非另有明确约定,否则应使用。如果跨系统提供商和委托人无法就活动目标达成一致,或者他们对目标应该是什么有不同的看法,则必须使用已发布的默认目标值。跨系统提供商和委托人不应以未能就活动目标达成一致为由不签订合同。所有跨系统关系都必须考虑已发布的默认目标中规定的 ERF 分配的公平份额。
摘要:这项研究研究了在水分和冷冻率的环境暴露条件下,大型3D打印的热塑性复合物质系统的耐用性。。 (CF/ABS)。在加速暴露之后,水分吸收,延伸系数和相关机械性能的降低(经臂强度和弯曲模量)。结果表明,与常规的聚合物复合材料相比,由基于生物的热塑性聚合物复合材料制成的大型3D打印零件更容易受到水分和冷冻 - 丝丝暴露的影响,并具有较高的水分吸收和机械性能的降低。
研究背景:轻质复合材料由于其高比强度、模量和能量吸收率,在航空航天、汽车和能源领域得到越来越广泛的应用。特别是,轻质复合材料可以使未来的车辆和风力涡轮机叶片更轻、更耐损伤,这对于实现净零排放目标至关重要。多相材料的协同作用通常会导致复合材料表现出独特的行为,优于传统材料。我们的目标是通过结合实验、分析和数值方法来揭示复合材料的变形和失效机制。这不仅可以解决一些基本的科学问题,还可以加速新型复合材料的发现和开发。