牲畜生产是基于捕获牲畜的作物的光合作用来捕获太阳的能量。太阳能基于光伏转换到电的捕获能量。拟议的项目将确定在美国整合太阳能技术和牲畜和蔬菜生产系统的新兴策略。通过过去的投资和在可再生能源和乳制品生产研究方面的机构经验,明尼苏达州西部中央研究与外展中心(WCROC)有一个全球独特的机会来带领一场新的绿色革命 - 这项革命是一项革命,该革命是当前在农业行业中消耗的革命。WCROC制定了一项战略计划,以减少化石能源消耗和乳制品生产系统中的碳足迹。这个协作项目将基于项目调查人员的可再生能源和太阳能技术活动。该提案将通过进一步整合农业生产商的太阳能技术和牲畜生产策略来利用当前的努力。
CATH(https://www.cathdb.info)从PDB中的实验蛋白结构和Alphafold数据库(AFDB)中预测的结构中分类的域结构。为了应对预测数据的规模,已经开发出一种新的NextFlow工作流量(Cath-Alphaflow),以将高质量的域分类为CATA超家族,并识别新颖的折叠组和超家族。Cath-Alphaflow使用一种新型的基于结构的结构域边界预测方法(Chainsaw)来识别多域蛋白质中的域。我们将CATA-AlphaFlow应用于未在21种模型生物体中的CATH和AFDB结构中分类的PDB结构,使CATH扩大了100%以上。域用于播种新颖的折叠,从PDB结构(2023年9月发行)中提供253个新折叠,而来自21个模型器官的蛋白质组织的AFDB结构中有96个。在可能的情况下,使用(i)从AFDB/uniprot50中的结构亲戚的注释中获得(i)预测(i)预测功能注释。我们还预测了功能部位和高度保守的残基。有些折叠与重要功能有关,例如光合作用的适应(感染植物),铁粘酶活性(在真菌中)和产后精子发生(在小鼠中)。Cath-Alphaflow将使我们能够在AFDB中识别更多的天主关系,从而进一步构成蛋白质结构景观。2024作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecom- mons.org/licenses/4.0/)。
非挥发相变的内存设备利用局部加热来在具有不同电性能的晶体和无定形状态之间切换。扩展这种切换到两个拓扑上不同的阶段需要受控的非易失性切换在两个具有不同对称性的晶体相之间。在这里,我们报告了在两个稳定且密切相关的晶体结构之间的可逆和非挥发性切换的观察,并具有非常不同的电子结构,在近室温的范德华(Van der waals)中,van der waals feromagnet fe 5-Δgete 2。我们表明,通过Fe位置空缺的顺序和无序,可以通过两阶段的晶体对称性来实现开关,这可以通过热退火和淬火方法来控制。这两个阶段是由于在位置排序相中保留的全局反转对称性而存在拓扑结节线的区别,这是由量子破坏性干扰在双位晶格上引起的,而在站点排序相位的反转对称性。
肯尼亚内罗毕的机甲工程部A BSTRACT本文提供了详尽的分析,该分析使用MATLAB SIMSCAPE进行锂电池设计和仿真,以最大程度地提高电动汽车的性能(EVS)。找到最佳的包装配置和单元格设计以实现EV操作的特定性能目标。电池容量,电压和能量需求是通过基于车辆参数的细致模拟来估算的。之后,MATLAB SIMSCAPE用于对电池系统进行建模和分析,以确定其在不同的驾驶场景和热管理技术下的性能。重要的发现表明,改进的电池系统的效果如何提高电动汽车的效率和范围。这项研究推进了电动汽车(EV)技术,这可能会对可持续性和能源效率产生有利的影响。k eywords电动汽车(EV),电池技术,电动汽车范围,可持续性,能源效率。1。介绍以减轻环境问题,并减少运输行业对化石燃料,电动汽车或电动汽车的依赖。由于锂电池是当代电动汽车中能量存储的主要形式,因此优化电池系统对于电动汽车技术的开发至关重要。实现电动汽车(EV)的适当性能指标需要对电池设计因素和建模方法进行细致的评估[1]。本研究提供了有关如何使用MATLAB SIMSCAPE进行锂电池设计和仿真来优化电动汽车性能的全面评论。找到最佳的包装配置和单元格设计以满足EV操作的指定性能目标。根据车辆规格,全面计算可用于近似电池容量,电压和能量需求,从而确保效率和兼容性。然后,使用MATLAB SIMSCAPE在各种驾驶情况和热管理策略下对电池系统进行建模和评估。这些模拟的结果提供了有关更新的电池技术在扩展电动汽车范围和效率方面的作用的有见地信息。结论进一步发展了电动汽车技术(EV)技术,这可能对节能和可持续性产生有利的影响。该项目的目的是通过加强电池设计和仿真程序来增加更有效和可持续的运输生态系统的变化[2]。
通过定向冰模板法制备了基于具有各向异性结构的纤维素纳米晶体 (CNC) 和多壁碳纳米管 (MWCNT) 的轻质且机械强度高的混合泡沫。各向异性混合 CNC-MWCNT 泡沫表现出高度各向异性的热导率和方向相关的电磁干扰 (EMI) 屏蔽性,对于含有 22 wt% MWCNT 的混合泡沫,在 8 到 12 GHz 之间最大的 EMI 屏蔽效率 (EMI-SE) 为 41–48 dB。EMI-SE 主要由吸收 (SE A ) 决定,这对于微波吸收器应用非常重要。低径向热导率的建模强调了声子散射在异质 CNC-MWCNT 界面处的重要性,而轴向热导率主要由沿取向的棒状颗粒的固体传导决定。轻质 CNC-MWCNT 泡沫结合了各向异性热导率和 EMI 屏蔽效率,这种特性十分独特,可用于定向热传输和 EMI 屏蔽。
Div> A Department of Chemistry, Faculty of Mathematics and Natural Science, University of North Sumatra, Medan, 20155, North Sumatra, Indonesia B Center of Excellent Chitosan and Advance Materials, University of North Sumatra, 20155, Medan, Indonesia C Department of Pharmacology and Therapeutics, Faculty of Medicine, University Mechanical Engineering, Faculty of Engineering, Mercu Buana University, West Jakarta, Indonesia E伦敦大学学院材料发现研究所,伦敦大学学院,WC1E 7JE,英国f物理学系,数学和自然科学学院,化学工程学院,化学工程,工程学院,麦加塞拉比大学,麦加,麦卡,班达·阿塞23245
Bio/Ecoresbable Electronic Systems在可植入的医疗设备中创造了独特的机会,这些设备在有限的时间内满足需求,然后自然消失以消除对提取手术的需求。这类技术开发的一个关键挑战是,材料可以用作周围水或生物流体的薄壁垒,但最终完全溶于良性最终产品。本文描述了一类无机材料(硅硝酸盐,sion),可以通过血浆增强化学蒸气沉积在薄膜中形成。体外研究表明,sion及其溶解产物具有生物相容性,表明其在植入式设备中的使用潜力。一个简便的过程,用于制造薄弱的多层薄膜,绕过与无机薄膜的机械脆性相关的限制。系统的计算,分析和实验研究突出了基本材料方面。在体外和体内发出无线发光二极管中的演示说明了这些材料策略的实际使用。通过对化学成分和厚度的精细调整,可以选择降解速率和水渗透性的能力为获得一系列功能寿命以满足不同的应用程序要求。
金属中的声子散射是材料科学中最基本的过程之一。但是,了解此类过程仍然具有挑战性,需要有关声子与电子之间相互作用的详细信息。我们使用超快速电子弥漫性散射技术来解决时间和动量中的飞秒激光器激发剂的钨中的非平衡声子动力学。我们确定声子模式的瞬态群体,这些群体表现出通过电子 - 音波耦合引发的强动量依赖性。对于布里远区域边界附近的声子,我们在大约1皮秒上观察到其人口的短暂上升,这是由强烈的电子 - 音波耦合驱动的,然后在大约8个picsecond的时间表上缓慢衰减,由弱声子 - 音音子释放过程控制。我们发现,隔离这两个过程需要钨的特殊谐波,从而导致纯金中的长期非平衡声子。我们发现电子散射可能是金属声子热传输的决定因素。
Meniere病(MD)是一种慢性内耳障碍,其特征是眩晕攻击,感觉性听力损失,耳鸣和听觉饱满感。因此,通过使用转录组分析,我们发现了支持MD炎症病因的广泛证据,我们旨在描述MD的炎症变体。我们对45例定义MD和15个健康对照的患者进行了大量RNASEQ。MD患者根据其基础IL-1β的基础水平分为2组:高和低。使用Exphunter Suite进行了差异表达分析,并使用估计算法XCELL,ABIS和CIBERSORTX评估细胞类型比例。MD患者显示出15个差异表达的基因(DEG)。顶部DEG包括IGHG1(p = 1.64´10-6)和IgLV3-21(p = 6.28´10-3),支持在适应性免疫反应中的作用。细胞因子促填充定义具有高水平IL-1β患者的亚组,具有IL6上调(p = 7.65´10-8)和INHBA(p = 3.39´10-7)基因。来自外周血单核细胞的转录组数据支持高水平IL6和幼稚的B细胞和记忆CD8 + T细胞的MD患者的临床亚组。
本报告讨论了ESDM部门在印度的作用,因为它不仅是战略部门,而且是具有巨大增长潜力的部门。印度为全球市场生产的能力主要在四个关键电子领域(手机,消费电子,IT硬件和电子组件)展示,占印度国内制造环境的70%以上。1从2015年到2022年,手机生产从6000万幅度飙升至3.1亿,其复合年增长率为26%。 2印度对其智能手机生产系统的开发一直是一个很好的案例研究,可以目睹各国如何通过明确的政策目标催化制造系统。 但是,为了确保这一增长势头能够进一步增强建筑弹性供应链,印度必须大步将其生产纳入全球供应链中,这一点很重要。 这将需要进行政策改革,鼓励全球主要公司在该国投资,并使国内公司能够成为全球价值链的一部分。1从2015年到2022年,手机生产从6000万幅度飙升至3.1亿,其复合年增长率为26%。2印度对其智能手机生产系统的开发一直是一个很好的案例研究,可以目睹各国如何通过明确的政策目标催化制造系统。但是,为了确保这一增长势头能够进一步增强建筑弹性供应链,印度必须大步将其生产纳入全球供应链中,这一点很重要。这将需要进行政策改革,鼓励全球主要公司在该国投资,并使国内公司能够成为全球价值链的一部分。