空间,包括10+1维的超弦。我们引入了超对称变换和超多重态的一些新表示。基于这些表示,分级李代数和各种公式(方程、对易关系、传播子、雅可比恒等式等)玻色子和费米子的数学特性可以统一。一方面,提出了粒子的数学特性:玻色子对应于实数,费米子对应于虚数,虚数只包含在费米子的方程、形式和矩阵中。这样的偶数(或奇数)费米子形成玻色子(或费米子),这正好符合虚数和实数之间的关系。它与相对论有关。另一方面,超对称的统一形式也与非线性方程统一的量子统计有关,并且可能违反泡利不相容原理(Chang,2014)。
4AID2-01:离散数学结构 学分:3 最高分数:100(IA:30,ETE:70) 3L+0T+0P 期末考试:3 小时 SN 内容 小时 1 简介:课程的目标、范围和结果。 1 2 集合论:集合的定义、可数集和不可数集、集合运算、集合的划分、基数(包含-排斥和加法原理)维恩图、集合上一些一般恒等式的证明。关系:定义、关系类型、关系的组成、关系的图形表示、等价关系、偏序关系、作业调度问题。函数:定义、函数类型、一对一、进入和到达函数、反函数、函数组成、递归定义函数、鸽巢原理。定理证明技术:数学归纳法、矛盾证明。函数组成。鸽巢原理和广义鸽巢原理。
引言 ;一些基本函数的逆变换 ;求逆变换的一般方法 ;求逆拉普拉斯变换的偏分式和卷积定理 ;用于求常系数线性微分方程和联立线性微分方程的解的应用 第 3 单元:傅里叶变换 [09 小时] 定义 - 积分变换 ;傅里叶积分定理(无证明) ;傅里叶正弦和余弦积分 ;傅里叶积分的复数形式 ;傅里叶正弦和余弦变换 ;傅里叶变换的性质 ;傅里叶变换的帕塞瓦尔恒等式。 第 4 单元:偏微分方程及其应用 [09 小时] 通过消去任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于求一维解的应用
摘要:微纳结构的应用日益广泛,这引起了人们对包含尺度效应的理论的兴趣,因为经典连续体理论在捕捉依赖于尺寸的效应方面存在局限性。出于这样的动机,本文使用边界元法 (BEM) 进行三维弹性静力学微结构建模。为了解释微结构效应,采用了 Aifantis 提出的简化梯度理论,这是 Mindlin 一般理论的具体化。建立了变分论证来确定问题的控制方程和边界条件。该论证解释了梯度弹性的基本解,并借助倒数恒等式构建了积分轮廓表示。Proriol 谱函数的弯曲三角元素用于近似 BEM 离散化的几何和物理参数。所提出的公式得出的结果与文献中的其他分析一致。
摘要:我们强调了 M5 膜 sigma 模型中场内容的全局完成的必要性,类似于狄拉克的电荷/通量量化,并指出世界体积及其周围超重力背景下的超空间 Bianchi 恒等式将 M5 的通量量化定律限制为非阿贝尔上同调理论,合理等同于扭曲形式的同伦。为了清楚地阐明这一微妙之处,我们通过 M5“超嵌入”对世界体积 3 通量进行了简化的重新推导。最后,假设通量量化定律实际上是同伦的(“假设 H”),我们展示了这如何意味着在一般 M5 世界体积上存在 Skyrmion 类孤子,以及在异质 M 理论中“开放 M5 膜”边界上存在(阿贝尔)任意子孤子。
空间,包括10+1维的超弦。我们引入了超对称变换和超多重态的一些新表示。基于这些表示,分级李代数和各种公式(方程、对易关系、传播子、雅可比恒等式等)玻色子和费米子的数学特性可以统一。一方面,提出了粒子的数学特性:玻色子对应于实数,费米子对应于虚数,虚数只包含在费米子的方程、形式和矩阵中。这样的偶数(或奇数)费米子形成玻色子(或费米子),这正好符合虚数和实数之间的关系。它与相对论有关。另一方面,超对称的统一形式也与非线性方程统一的量子统计有关,并且可能违反泡利不相容原理(Chang,2014)。
摘要。这是一篇说明性文章,旨在向读者介绍量子纠错的底层数学和几何学。存储在量子粒子上的信息会受到环境噪声和干扰的影响。量子纠错码可以消除这些影响,从而成功恢复原始量子信息。我们简要介绍了必要的量子力学背景,以便能够理解量子纠错的工作原理。我们继续构建量子码:首先是量子比特稳定器码,然后是量子比特非稳定器码,最后是具有更高局部维度的码。我们将深入研究这些代码的几何形状。这使我们能够有效地推导出代码的参数,推导出具有相同参数的代码之间的不等价性,并提供了一个推导出某些参数可行性的有用工具。我们还包括关于量子最大距离可分离码和量子 MacWilliams 恒等式的章节。
4CAI2-01:离散数学结构 学分:3 满分:100(IA:30,ETE:70) 3L+0T+0P 期末考试:3 小时 SN 内容 小时 1 简介:课程目标、范围和结果。 1 2 集合论:集合的定义、可数集和不可数集、集合运算、集合划分、基数(包含-排斥和加法原理)维恩图、集合上一些一般恒等式的证明。关系:定义、关系类型、关系组合、关系的图形表示、等价关系、偏序关系、作业调度问题。函数:定义、函数类型、一对一、入函数和到函数、反函数、函数组合、递归定义函数、鸽巢原理。定理证明技术:数学归纳法、矛盾证明。函数组合。鸽巢原理和广义鸽巢原理。
这是一篇说明性文章,旨在向读者介绍量子纠错的底层数学和几何学。存储在量子粒子上的信息会受到环境噪声和干扰的影响。量子纠错码可以消除这些影响,从而成功恢复原始量子信息。我们简要描述了理解量子纠错工作原理所需的量子力学背景。我们继续构建量子码:首先是量子比特稳定器码,然后是量子比特非稳定器码,最后是具有更高局部维度的码。我们将深入研究这些代码的几何学。这使我们能够有效地推导出代码的参数,推导出具有相同参数的代码之间的不等价性,并提供了一个推导出某些参数可行性的有用工具。我们还包括关于量子最大距离可分离码和量子 MacWilliams 恒等式的部分。