惯性静电约束 (IEC) 利用强电场来产生和约束等离子体。它已广泛用于进行核聚变反应,并在商业上用作活化分析的中子源。本研究调查了 IEC 推进器的两种不同放电模式,即“喷射”模式和“喷雾”模式。本文比较了 IEC 系统在各种初步设计方案下的放电特性,例如阴极网格设计和阴极网格尺寸。高分辨率图像用于在多个操作点进行强度分析。基本法拉第探针用于定性记录等离子体电流密度的变化。结果表明,在更负的电位下偏置阴极会导致网格吸收的电流和可见等离子体的可见强度增加。电流和光强度逐渐增加,直到发生从“喷射”到“喷雾”的模式转变。换句话说,“喷射”模式始终先于“喷雾”模式。此外,背景压力和施加的阴极电位被证明是 IEC 设备的两个主要操作变量。最后,当设备以“喷雾”模式运行时,记录到更高的电流密度,然而,在“喷射”模式下,喷出的等离子体更加准直。
现代电力系统正在见证可再生可变发电 (VG) 源的渗透率空前增长。太阳能光伏和风能等转换器接口 VG 的使用率不断提高,同时取代了传统的同步发电机 (SG),这给电网运营商在动态处理频率稳定性和调节方面带来了新的挑战。减少 SG 的数量,同时增加非同步、无惯性的转换器接口 VG,会降低电网的自然惯性,而这对于保持频率稳定性至关重要。为了解决惯性不足的问题,研究人员普遍建议对 VG 源或储能系统实施补充控制策略,以模拟自然惯性(虚拟惯性 (VI))。或者,VG 源可以在其最大功率点以下运行(卸载模式),从而提供备用裕度,在电力电子设备的帮助下,如果发生意外情况,可以快速部署备用裕度,以提供快速频率响应。本文回顾了文献中提出的解决低惯性问题以提高频率稳定性的最新解决方案。此外,它还重点介绍了 VI 大小和位置优化问题的公式化以及解决优化问题所采用的技术。最后,确定了需要进一步研究的文献空白。
• 区域调制方法:系统的整体性能表明,区域调制方法可能为 NEM 的使用提供最佳的弹性、灵活性和准确性。通常,我们预计每个联邦州需要一个调制器。由于监控网络及其安全性的责任在于 TNSP,我们建议相关 TNSP 应负责根据可用性和需求要求,通过专用资产或替代共享资产使用调制来采购测量服务。对于持续服务,需要更长的运行时间和连续调制,这可能会使经济平衡转向超级电容器而不是 BESS,但这可以考虑到任何设计和开发决策中。
马耳他公司 2023 年 10 月 18 日,美国能源部电力咨询委员会 (EAC) 发布了一份令人震惊的报告,题为“迫切需要可靠地促进能源转型”。1 它指出了替换即将退役的传统发电厂所提供的属性的迫切需要,这些属性可以保持电网的稳定、可靠和有弹性。它包括这些属性:惯性、无功功率能力、能源保证资源等。EAC 发布该报告“是为了营造一种采取行动的紧迫感……尽快确保我们还来得及可靠地过渡到我们的能源未来。” 可靠性属性,比如惯性,是看不见的、无补偿的服务,可以让电网像陀螺一样旋转。整个电网的设计和建造都以它们的可用性为假设。随着煤炭、天然气和核能等传统发电厂的退役,它们正在消失。虽然它们产生的兆瓦级能源可以被可变的可再生能源所取代,但它们提供的基本电网可靠性服务并不是由太阳能、风能或电池提供的,而且极难模仿。如果没有惯性,电网的频率就会变得不稳定,从而导致设备损坏,甚至电网崩溃。幸运的是,无碳同步长时储能等新技术可以填补这一空白,确保可靠的能源转换。 惯性的重要性 电网被称为世界上最大的机器 2 和 20 世纪最伟大的工程成就。 3 通过庞大的输配电线路网络将发电厂与消费者连接起来,它能在家庭、企业和行业需要时立即提供电力。自从托马斯·爱迪生将曼哈顿下城的珍珠街发电站与 59 个客户连接起来以来,电网一直在不断发展,但其基本结构和运行原理一直保持不变。电网的设计目标是不断平衡能源的供应和需求,使整个网络以相同、稳定的速度运行。在北美和其他几个国家,电网速度为 60 Hz。欧洲和世界其他大部分地区的电网频率为 50 Hz。如果
原子干涉法是一种高度精确的惯性传感技术(Kasevich等,1991)。可以通过一系列激光脉冲询问免费的原子波包,可以提取有关加速度和转弯速率的信息,从而计算完整的导航解决方案(位置,速度和态度)。Applications of this technique for accelerometers (Barrett et al., 2014 ), gyroscopes (Gauguet et al., 2009 ; Schubert et al., 2021 ), and complete inertial measurement units (IMUs) (Gebbe et al., 2021 ; Gersemann et al., 2020 ) based on Bose–Einstein condensates are currently under research.惯性导航1小时后的潜在位置精度达到5 m(Jekeli,2005年),这使原子干涉法成为全球导航卫星系统(GNSS)遭受重复环境的高度有希望的技术。
我要感谢 José Neira 和 Silvère Bonnabel 教授让我有幸同意报告这篇论文,感谢审稿人 Samia Bouchafa、Pascal Vasseur 和 Michel Dhome 教授对我的工作和研究感兴趣。决定授予我医师职称。我要感谢我的论文导师 Guy Le Besnerais。他非常投入、要求严格、坦率并且总是关心我,他成功地促使我写出一篇好的论文,总是提供明智而有效的建议。我感谢大卫·维西埃,他以他传奇般的热情为这项工作提供了最初的动力,他直到最后都信任我,即使他对所采取的方向有疑问。尽管中小企业的担忧在科学博士学位的学习期间通常很难预测,但我最终拥有了很大的自由和自主权。我要非常感谢 Martial 和 Alexandre:我在论文的技术和科学方面以及其一般行为方面获得了特权。感谢 Martial 与我分享您在视觉里程计和传感器方面的经验、您的幽默感和善良。感谢 Alex 的技术讨论,这使我能够在提供技术细节(通常是枯燥的(肮脏的?))、有用的含义和值得告诉他们的兴趣的同时,提高我的理解。如果没有您精心的校对工作,论文的质量就无从谈起
同步定位与地图构建现在已被许多应用广泛采用,研究人员已就此主题撰写了大量文献。随着智能设备的出现,嵌入式摄像头、惯性测量单元、视觉 SLAM (vSLAM) 和视觉惯性 SLAM (viSLAM) 正在实现新颖的一般公共应用。在此背景下,本文对流行的 SLAM 方法进行了回顾,重点关注 vSLAM/viSLAM,包括基础和实验层面。它首先对现有的 vSLAM 和 viSLAM 设计进行结构化概述,然后对十几种主要的最先进方法进行新的分类。对 viSLAM 发展的历史回顾突出了历史里程碑,并将较新的方法归类。最后,针对城市环境中使用手持设备进行行人姿势估计的用例,通过实验评估了 vSLAM 的性能。使用 EuRoC MAV 数据集和对应于城市行人导航的新视觉惯性数据集比较了五种开源方法 Vins-Mono、ROVIO、ORB-SLAM2、DSO 和 LSD-SLAM 的性能。对计算结果的详细分析确定了每种方法的优缺点。从全球来看,ORB-SLAM2 似乎是解决城市行人导航挑战最有希望的算法,使用两个数据集进行了测试。
neoen(ISIN:FR0011675362,股票:Neoen)是全球主要可再生能源的领先生产商之一,已成功实施了Tesla的虚拟机模式(VMM),其150 MW / 193.5 MW / 193.5 MWH Hornsdale Power Reserve(HPR),澳大利亚的第二大LIRITH LITH LITH LITHIUM-IN-ION LITHIUM-IN-ION LITHIUM-ION LITHIUM-IN-IN-IN-IN-IN-IN LITH LITH LITH LITH LITH LITH。HPR已获得AEMO的批准,因为它的网格形成逆变器开始向南澳大利亚州的网格提供惯性服务。在电力网络的正常运行和重大干扰之后,都需要最低水平的惯性与频率控制服务。惯性传统上是由天然气或发电机提供的。热电厂的关闭和可再生能源的增加导致网格中的惯性短缺,这是一个严重的网络问题,电池现在可以克服。在应对这些挑战时,这种创新的解决方案代表了全球意义的突破。位于网络的关键部分,HPR将自动为南澳大利亚电网提供必要的稳定性,在过去的12个月中,南澳大利亚电网已达到64%的可再生渗透。hpr现在有能力贡献约2,000兆瓦的同等惯性,或该州网络中预计短缺的15%,该网络中有170万人和150,000个企业提供服务。惯性服务是Neoen电池令人印象深刻的工具包的宝贵补充,该工具包已经包括能量套利,快速响应和频率调节。neoen的G Ride级电池既快速又灵活,并且能够同时使用其能力的不同分数,以响应网络和市场中产生的需求,并能够同时向客户提供多个服务。
摘要:亚惯性、地形捕获的全日内潮汐是亚北极海洋湍流混合的重要能量来源。然而,它们的产生可能无法通过传统的正压到斜压转换来估计,因为它们的垂直结构有时是正压的,而超惯性内潮汐则总是斜压的。本文给出了一个新的能量图,其中正压模式分解为表面和地形模式,后者与斜压模式一起归类为内部模式的一部分。然后推导出新定义的地形模式的能量方程,从而为从亚惯性表面潮汐到地形捕获内潮汐的能量转换率提供了适当的公式。一系列数值试验证实,该公式能成功预测各种情况下的能量转换率,斜压和地形模态的相对贡献随底部地形和地层而显著变化。此外,对于亚惯性潮汐,这种从表面到内部的转换给出的估计值明显大于从正压到斜压的转换。将该公式应用于千岛海峡(亚惯性全日潮汐混合最强的区域)的实际数值模拟结果表明,表面模态转换为具有可比量级的斜压和地形模态,造成该地区大部分能量耗散。这些结果表明需要使用我们的新公式重新估计亚惯性内潮产生率的全球分布,并阐明其耗散机制。
电力系统正在经历前所未有的转变,从基于化石燃料的发电厂转变为主要依赖电力电子和可再生能源的低惯性系统。本文回顾了由此产生的设备和系统层面的控制挑战和建模谬误,并重点介绍了在向低惯性系统过渡的过程中需要修改的新方面或经典概念。为此,我们调查了有关低惯性系统建模的文献,回顾了有关电网连接电源转换器控制的研究,并讨论了低惯性系统的频率动态。此外,我们从控制的角度讨论了系统级服务。总的来说,我们得出结论,系统理论思维对于连接不同的研究社区和理解大规模低惯性电力系统中电力电子、电机及其控制的复杂相互作用至关重要。