提交轨道 摘要 提交日期:2024 年 11 月 7 日 糖尿病是一种慢性代谢疾病,其特征是由于身体产生胰岛素的能力受损而导致血糖水平高(高血糖症)。根据国际糖尿病联合会 (IDF) 的数据,糖尿病患者的数量将在 2024 年迅速增加到 7 亿人。因此,我们需要找出感染糖尿病的诱因。其中之一是使用机器学习方法。机器学习用于对哪些因素可能导致感染糖尿病进行分类。进行这种分类的众所周知的方法之一是多层感知器 (MLP) 方法,它是一种由多层组成的人工神经网络 (ANN),其中每层都有相互连接的节点。它的优点是它能够处理复杂数据特征之间的非线性关系——包括患者数据和患者的疾病——因此据说这种方法与本研究非常相关。研究人员还将 MLP 的准确率与其他几种算法(如随机森林、支持向量机和 K-最近邻)进行了比较。这旨在评估 MLP 与其他方法相比在糖尿病分类中的有效性。此外,研究人员还希望克服传统方法在糖尿病分类中的弱点,并提供基于人工智能的解决方案,方法是利用 MLP 处理医疗数据并关注可能影响糖尿病患者的参数或特征。机器学习中的几种技术,如正则化和超参数优化可以防止过度拟合,数据规范化和降维可用于提高模型输入的质量,从而最大限度地提高准确率并使诊断过程更快、更准确。结果表明,与其他算法相比,MLP 在对该疾病进行分类方面具有良好的性能。MLP 获得更稳定、更高的结果。总体而言,可以说 MLP 的应用对改善糖尿病诊断系统做出了重大贡献,有望应用于医疗系统。
纯量子力学特性(例如相干性和纠缠)可以解决困难的计算任务,与经典计算相比,其性能呈指数级提升 [8]。这两个领域取得的巨大成功正推动量子机器学习研究的快速发展,探索机器学习和量子计算之间的相互作用,以了解这两个领域是否可以互利互惠。最简单的人工神经元模型可以追溯到经典的Rosenblatt感知器[9],它可以看作是最简单的二元分类学习算法。可以考虑通过量子架构实现感知器的多种可能性[10-16]。在这种情况下,研究特定量子感知器模型相对于其经典对应物实现量子优势的能力非常重要。单个经典感知器的主要限制在于,分类任务是通过在包含定义模式的 N 个特征的向量空间中的超平面将属于不同类别的模式分离来完成的。特别地,人们很快指出,简单的感知器无法计算 XOR 函数 [17],因为这对应于一个分类问题,其中不同的类别不能用平面上的一条线分开。然而,人们发现,当考虑大量特征时,即对于具有大维度 N 的向量空间中的模式,给定 p 个随机标记模式,如果 p < 2 N 且 N 很大,则感知器无法对它们进行分类的可能性极小[18,19]。相反,当 N 很大时,当 p > 2 N 时,简单感知器能够对 p 个随机标记模式进行分类的概率变得非常小。显然,表征感知器性能的重要参数是比率 α = p / N ,并由此确定该比率的临界值作为经典感知器的模式容量,即 α c = 2。在开创性的工作 [ 20 ] 中,Gardner 采用统计物理工具特别是无序系统理论的方法,对神经网络的模式容量提出了一种新方法。找到分离随机标记模式的超平面的可能性实际上属于随机约束满足问题类 [ 16 , 21 , 22 ],可以使用自旋玻璃的统计理论进行研究。在这个方法中,参数 α 在高维情况下引起相变,模式容量由分离 SAT 相的临界值 α c 决定,对于 α < α c ,可以满足所有约束,即将所有模式从 UNSAT 相中分类,α > α c ,其中未满足约束的最小数量大于零。在这里,我们将遵循 Gardner 的统计方法,推导 [14] 中引入的基于连续变量多模式量子系统的特定量子感知器模型的模式容量。我们表明,该模型与经典模型相比没有任何量子优势,因为其容量始终小于其经典极限。本文结构如下。在第 2 节中,我们介绍了经典感知器及其模式容量的定义。在第 3 节中,我们描述了正在研究的量子感知器模型,并展示了由此产生的模式容量。在第 5 节中,我们详细解释了所采用的技术,这些技术基于 Gardner 用来确定经典感知器的模式容量的相同统计方法。最后,在第 4 节中,我们讨论了本文获得的结果,并将它们与同样通过统计方法获得的模式容量进行了比较,但针对的是不同的量子感知器模型。
量子机器学习算法可以显著提高其速度,但其是否也能实现良好的泛化仍不清楚。最近,Wiebe 等人 [2016] 提出了两个量子感知器模型,它们使用 Grover 搜索比经典感知器算法实现了二次方的改进。第一个模型降低了与训练集大小相关的复杂度,而第二个模型则提高了感知器错误数量的界限。在本文中,我们介绍了一种混合量子-经典感知器算法,其复杂度低于经典感知器,泛化能力优于经典感知器。我们在样本数量和数据边际方面都比经典感知器实现了二次方的改进。我们推导出了算法返回的假设预期误差的界限,与使用经典在线感知器获得的误差相比,该界限更为有利。我们利用数值实验来说明量子感知器学习中计算复杂性和统计准确性之间的权衡,并讨论将量子感知器模型应用于近期量子设备的一些关键实际问题,由于固有噪声,其实际实施面临严峻挑战。然而,潜在的好处使得纠正这个问题值得。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
T F = 0的相应传输函数。15,其中虚线曲线代表2 = - 50,a 3 = - 3980。(b)对于t f = 0。15,在使用θ= p 3 i = 0 a i t i(固体蓝色)的情况下,使用θ= p 5 i = 0 a = 0 a i t i具有最佳参数a 2 = - 50,a 3 = -3980(dotted-y/ y/ y/ y/ f = 12 fur = fur = fure), 15。在T min f = 0时最小的操作时间t f到达。 15用于c <0。 01。 数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。 参考文献中介绍了STA与最佳控制理论之间的详细比较。 [1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。 在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。15。在T min f = 0时最小的操作时间t f到达。15用于c <0。01。数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。参考文献中介绍了STA与最佳控制理论之间的详细比较。[1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。
背景和客观:生物体的功能及其生物学过程源于基因和蛋白质的表现。因此,量化和预测mRNA和蛋白质水平是科学研究的关键方面。关于mRNA水平的预测,可用的方法使用转录起始位点(TSS)上游和下游的序列作为神经网络的输入。最新模型(例如Xpresso和basenjii)预测利用卷积(CNN)或长期记忆(LSTM)网络的mRNA水平。但是,CNN预测取决于卷积内核的大小,LSTM遭受捕获序列中的长期依赖性。据我们所知,关于蛋白质水平的预测,没有通过利用基因或蛋白质序列来预测蛋白质水平的模型。方法:在这里,我们利用一种新的模型类型(称为感知器)用于mRNA和蛋白质水平预测,从而利用了具有注意力调节的基于变压器的体系结构来参加序列中的长期相互作用。此外,感知器模型克服了标准变压器体系结构的二次复杂性。这项工作的贡献是1。dnaper-ceiver模型,以预测TSS上游和下游序列的mRNA水平; 2。Pro-teminepeiver模型,以预测蛋白质序列的蛋白质水平; 3。蛋白质和dnapceiver模型,以预测TSS和蛋白质序列的蛋白质水平。结果:这些模型是在细胞系,小鼠,胶质母细胞瘤和肺癌组织上评估的。结果表明,感知器型模量在预测mRNA和蛋白质水平方面的有效性。结论:本文介绍了mRNA和蛋白质水平预测的感知器结构。将来,将调节和表观遗传信息插入模型可以改善mRNA和蛋白质水平的预测。源代码可在https://github.com/matteostefanini/dnaperceiver
1 印度旁遮普邦奇特卡拉大学工程技术学院,2 印度加济阿巴德 KIET 机构集团,3 中国浙江嘉兴中大集团,4 黎巴嫩美国大学电气与计算机工程系,黎巴嫩比布鲁斯,5 印度韦洛尔韦洛尔理工学院信息技术与工程学院,6 中国嘉兴嘉兴学院信息科学与工程学院,7 印度帕格瓦拉洛夫利职业大学研究与开发部,8 埃及坦塔坦塔医学院公共卫生与社区医学,9 韩国首尔世宗大学数据科学系,10 韩国水原成均馆大学医学院
摘要 电力系统的可靠运行是电力公司的一个主要目标,这需要准确的可靠性预测以最大限度地减少电力中断的持续时间。由于天气状况通常是智能电网(尤其是其配电网)电力中断的主要原因,本文全面研究了各种天气参数对配电网可靠性性能的综合影响。特别地,提出了一种基于多层感知器 (MLP) 的框架,使用常见天气数据的时间序列来预测一个配电管理区域中每日持续和瞬时电力中断的次数。首先,实施参数回归模型来分析每日电力中断次数与各种常见天气参数(如温度、降水量、气压、风速和闪电)之间的关系。然后将选定的天气参数和相应的参数模型作为输入,以建立 MLP 神经网络模型来预测每日电力中断次数。引入了一种改进的基于极限学习机 (ELM) 的分层学习算法,使用来自佛罗里达州电力公司的实时可靠性数据和来自国家气候数据中心 (NCDC) 的常见天气数据来训练制定的模型。此外,还实施了敏感性分析以确定各种影响