评估该设备的方法,研究了5名男性和6名女性。作为参考练习,参与者在史密斯机器上进行了阻力训练,其体重和垂直跳跃和前脚跳跃的额外负载为50%。在NEX4EX上,在直立的站立位置进行了感觉运动训练。通过与肩带连接的4绳拉一起拉动姿势的干扰。目的是在发生干扰后尽快保持直立的立场或尽快恢复它。此外,在NEX4EX的第二次配置中,对雪橇上仰卧的受试者进行了阻力训练和高素质练习。在所有练习中,所选肌肉的激活被确定为EMG信号的根平方。
1 英国伦敦伦敦大学学院皇后广场神经病学研究所临床和运动神经科学系;2 英国牛津大学纽菲尔德临床神经科学系 FMRIB 威康综合神经影像中心;3 英国牛津大学医学研究委员会脑网络动力学部;4 英国牛津大学精神病学系威康综合神经影像中心牛津人类大脑活动中心;5 英国伯明翰大学心理学院人类大脑健康中心;6 法国布隆 CNRS UMR 5229 马克·让纳罗德认知科学研究所;7 法国里昂里昂大学克劳德·伯纳德里昂第一大学;8 英国伦敦伦敦伦敦大学学院皇后广场神经病学研究所成像神经科学系威康人类神经影像中心
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月10日。; https://doi.org/10.1101/2023.07.04.547720 doi:biorxiv Preprint
Beta活动被认为在感觉运动过程中起关键作用。然而,对于该频带中的活动如何发展知之甚少。在这里,我们研究了从婴儿期到成年期的感觉运动β活性的发育轨迹。,我们从9个月大,12个月大的成年人(男性和女性)中记录了脑电图,同时他们观察并执行了抓握运动。我们使用一种结合时间频分解和主成分分析的新方法分析了“β爆发”活性。然后,我们检查了沿所选主组件的突发速率和波形基序的变化。我们的结果揭示了在跨部门执行过程中β活动的系统变化。我们发现,在所有年龄段的运动执行过程中,β爆发率下降,成年人观察到最大的下降。此外,我们确定了三个主要组件,这些组件定义了在整个试验过程中系统地改变的波形图案。我们发现,波形形状更接近中间波形的爆发不是速率调节的,而波形形状远离中位数的爆发则差异速率调节。有趣的是,某些爆发基序的速率降低发生在运动过程中早期发生,并且在成年人中比婴儿更偏侧,这表明特定类型的β爆发的速率调节速度随着年龄的增长而变得越来越完善。
感觉输入和运动输出之间的关系最初是学习的,并不断适应。感觉运动灵活性使我们能够适应新环境、适应受伤后的情况,甚至学习新技能。例如,我们可以很容易地适应力场施加的运动运动学变化以及视觉反馈和运动之间关系的变化(10)。这种适应不仅需要运动控制的可塑性,还需要感觉知觉的可塑性(11),强调运动和感觉是相互交织的功能。鉴于自然系统中感觉和运动控制的闭环功能,优化 BMI 以恢复感觉运动功能需要考虑两个系统之间的密切相互作用。闭环感觉运动功能的灵活性也凸显了在 BMI 中考虑学习的必要性。
1。简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。52 2。自然和人工感觉运动功能。。。。。。。。。。。。。。52 3。运动脑 - 机器界面。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。54 3.1。。。。在闭环运动脑 - 机界面中学习。。。。。。。。。。。。。。54 3.2。大脑区域。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。56 3.3。 神经特征。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。56 3.3。神经特征。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>57 3.4。 div>解码器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>59 3.5。 div> 设备和控制环属性。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>59 3.5。 div>设备和控制环属性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>61 3.6。 div>反馈的形式。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>61 4。 div>神经假体的人造感觉。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>62 4.1。 div>人造感觉。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62 4.2。 大脑区域是人为反馈的目标。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 62 4.3。 通过电刺激引起的神经活动模式。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 63 4.4。 学习使用人造感觉。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。62 4.2。大脑区域是人为反馈的目标。。。。。。。。。。。。。。。。。。。。。。。。。。。。。62 4.3。 通过电刺激引起的神经活动模式。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 63 4.4。 学习使用人造感觉。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。62 4.3。通过电刺激引起的神经活动模式。。。。。。。。。。。。。。。。。。。63 4.4。学习使用人造感觉。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。65 4.5。皮质适应电刺激。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。66 4.6。 感觉感知通过电刺激引起。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 68 5。 结论和未来的研究。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 6866 4.6。感觉感知通过电刺激引起。。。。。。。。。。。。。。。。。。。。。。。。。68 5。结论和未来的研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。68
体现的方法认为,与环境的相互作用在大脑发育中起着至关重要的作用,并且运动产生的感觉效应的存在是基本的。胎儿的运动最初是随机的。然后,运动的重复执行在IT与其感觉效应之间建立了联系,从而选择了产生预期感觉的运动。在胎儿寿命中,大脑从临时胎儿回路发展到永久性皮质回路,该回路完成了出生后的发育。因此,此过程必须涉及胎儿与宫内环境以及新生儿与新的空中环境的相互作用,该环境提供了新的感觉刺激。本综述的目的是通过从功能性的角度描述胎儿和新生儿的运动能力之间的关系以及与子宫中对象的相互作用的增强相互作用的日益复杂性,从而为能够阐明脑发育过程的神经科学研究提供建议。
摘要许多由密集数据驱动的公司平台设计和控制的许多数字技术在我们的许多日常活动中都变得无处不在。这引起了政治和道德的关注,他们可能如何威胁我们的个人自主权。但是,在这方面,其超设计(感觉运动)接口所起的特定作用并没有给予太多哲学关注。在本文中,我们的目标是提供一个新颖的框架,可以在感觉运动互动上进行个人自身自身,并从那里直接解决技术设计如何影响个人自主权。为此,我们将从实施的感应方法中汲取认知,重点关注习惯的中心概念,被理解为感觉运动方案,在网络关系中,会引起感觉运动代理。从感觉运动代理作为更复杂形式的个人自治形式的基础,我们的方法为我们分析与技术的关系(一般而言),并区分自主性增强的建立和自动化技术。我们认为,通过赞成/妨碍某些习惯的(网络)而不是其他习惯,技术可以直接在我们本地和全球的个人自主权上行动。考虑到这一点,我们然后讨论当前的数字技术通常是如何设计为自治的(就像设计中的“黑暗模式”一样),并素描一些有关如何构建更多自治数字技术的想法。
1 1 阿维森医院,AP-HP,索邦纳大学巴黎诺德,巴比尼,法国2号,巴黎2学院和神经科学研究所法国4RenéDiatkine单位,法国巴黎第13座心理健康协会,法国5成人精神病学系,Impact,Mondor Hospital,AP-HP,AP-HP,Paris-Paris-EstCréteil,Créteil,法国克里斯蒂尔,法国6Brétigny-Sur-sur-Gorge 7 Institute ofCréteil,France 7 Institute france 7 Institute france 7 Institute france france 7州8 Inspiire,Inserm UMR 1319,洛林大学,南希,法国9 ADES,CNRS UMR 7268,AIX-MARSELILLILY UNIXPYSIL,MARSEILLE,MARSEILLE,法国10,CAEN NORMANDY UNISSHILY HOSTICY,CAEN NORMANDIY UNIXGYS HOSTICY,CAEN,CAEN,法国CAEN,法国,11月11日的物理病理学和成像, 1237年,诺曼底大学,法国坎恩,12个精神病学系,马萨诸塞州综合医院,美国马萨诸塞州波士顿,美国马萨诸塞州,美国13横向心理生成和心理病理学横向单位,索邦内大学巴黎诺德,法国Villetaneuse,法国14号国家弹性和疾病中心,国家杂志和疾病中心。马,美国
多项研究表明脑机接口 (BCI) 训练对中风康复具有积极的临床效果。本研究探讨了基于感觉运动节律 (SMR) 的 BCI 与音频提示、运动观察和多感觉反馈对中风后康复的疗效。此外,我们讨论了 BCI 训练中训练强度和训练持续时间之间的相互作用。24 名患有严重上肢 (UL) 运动障碍的中风患者被随机分为两组:2 周 SMR-BCI 训练结合常规治疗(BCI 组,BG,n = 12)和 2 周常规治疗(无 SMR-BCI 干预)(对照组,CG,n = 12)。使用临床测量量表测量运动功能,包括 Fugl-Meyer 上肢评估 (FMA-UE;主要结果测量)、Wolf 运动功能测试 (WMFT) 和改良 Barthel 指数 (MBI),测量时间分别为基线(第 0 周)、干预后(第 2 周)和随访周(第 4 周)。在第 0 周和第 2 周记录分配到 BG 的患者的 EEG 数据,并通过 mu 节律 (8-12 Hz) 的 mu 抑制均值事件相关去同步 (ERD) 进行量化。第 2 周时两组的所有功能评估评分(FMA-UE、WMFT 和 MBI)均显著提高(p < 0.05)。第 4 周时 BG 的 FMA-UE 和 WMFT 改善程度显著高于 CG。双侧半球的μ抑制与第2周的运动功能评分均呈正趋势。本研究提出了一种新的有效的SMR-BCI系统,并证明结合音频提示、运动观察和多感觉反馈的SMR-BCI训练与常规治疗相结合可以促进持久的UL运动改善。