认知发展通常被认为取决于解决问题的策略的定性变化,并且早期开发了算法程序(例如,在添加数字时计数)被认为是被成年人中的关联取代(例如,在操作数和添加问题的答案之间)所取代的成人。但是,算法rithmic程序也可能随着实践而自动化。在从8岁到成年期的一项大型横断面fMRI研究中(n = 128),我们通过测量与年龄相关的降低相关的神经变化来评估这一假设,这是精神添加的行为标志,问题尺寸的效果(随着问题总和的求解时间增加而增加))。我们发现,与年龄相关的问题大小效应的降低与年龄相关的活动中的活性增加并联,该区域已经支持了8至9岁儿童中问题大小的EF EF FECT,在某个年龄的年龄至少部分是由于显式计数所致。这种发育效果在基底神经节和额叶皮层中也观察到,仅限于操作数≤4的问题。这些发现与一个模型一致,该模型表明,非常小的算术问题(而不是更大的问题)可能依赖于计数程序的自动化,而不是向检索转移,并建议在认知发展过程中对程序知识的神经自动化。
在许多动物中,生殖系在胚胎发生早期就已分化,因此只有在生殖细胞中积累的突变才会被后代遗传。这一发育过程的例外可能表明已经进化出其他机制来限制有害突变积累的影响。石珊瑚是可以存活数百年的动物,人们一直认为它们从体细胞组织中产生配子。为了澄清关于珊瑚生殖系-体细胞区别的相互矛盾的证据,我们对亲本珊瑚分支及其精子库进行了高覆盖率的全基因组测序和技术重复。我们确定了每个亲本分支独有的胚胎后单核苷酸变异 (SNV),然后检查每个 SNV 是否由各自的精子库共享。26% 的胚胎后 SNV 由精子共享,74% 则不是。我们还确定了生殖系 SNV,即存在于精子中但不存在于亲本中的 SNV。这些数据表明,自我更新的干细胞在群落的成年期会分化为生殖细胞和体细胞,而 SNV 率和模式在干细胞、体细胞和生殖细胞谱系中存在显著差异。除了为后生动物生殖细胞的进化提供信息外,这些见解还揭示了珊瑚如何产生应对全球气候变化所必需的适应性多样性。
图1:围产期和成年人对成年期观察到的富集的影响。(a)富集环境(EE)和标准外壳(SH)的示意图。(b)论文中使用的数据集的插图。数据集N(“新生儿”):围产期富集,在p7灌注的p7 for ex Vivo MRI。n-ee:EE出生的新生儿; N-SH:出生于Sh的新生儿。阴影是因为在此图中未使用。数据集P(“围产期”):围产期富集到成年(6周富集),在体内MRI的p43灌注动物。p- EE:出生于EE中的动物。p-sh:出生于sh的动物。数据集A(“成年”):标准外壳中的动物直到p53,成年期从p53到p96(富集6周)。动物在p96灌注p96的体内MRI。a-ee:成年后转移到EE的动物。A-SH:成年后住在Sh的动物。“方法”部分提供了更多详细信息。(c)将VOXEL线性模型应用于来自数据集P和A的线性共注册后计算的Jacobians(对单个大脑体积变化进行校正)(请参阅方法)(请参阅方法)。(左图)EE在成年期间的效果,无论富集的时间如何。回归者是住房状况和性别。(右图)围产期与成年的差异效应
项目名称 研究细胞竞争潜在调节剂的作用 项目概要 细胞竞争是一种生物现象,在发育和成年期起着至关重要的作用,因为它确保组织保持体内平衡。细胞竞争类似于细胞规模上的达尔文进化论。当组织由具有不同相对“适应性”的细胞组成时,适应性更强或更适应的细胞(“赢家”)将淘汰适应性较差的“输家”细胞。毫不奇怪,这种现象被用于癌症等疾病,其中肿瘤细胞可以消灭正常细胞并因此在组织中定殖。尽管长期以来人们对细胞竞争一直很感兴趣,但我们仍然缺乏有关控制细胞竞争的分子机制的重要见解。我们最近在果蝇中创建了一种遗传工具,使我们能够通过在同一组织中生成具有不同适应性的细胞克隆来研究体内细胞竞争。这使我们能够潜在地破译控制细胞竞争的分子机制。利用该工具,我们分析了果蝇细胞竞争的两种范式,生成了“赢家”和“输家”细胞的转录组特征,并确定了在“赢家”和“输家”细胞中差异表达的基因,这些基因是细胞竞争的潜在新型调节剂,我们旨在在此项目中进行研究。
为了加速优良苹果品种的早期发育,建立加速从幼苗期向成年期过渡的技术至关重要。阐明这一阶段转变背后的生理机制将有助于开发确保早期阶段转变的苹果幼苗生长系统。在此,在受控条件下对无融合生殖海棠 Malus hupehensis (Pamp.) Rehd. 进行水培栽培,以探索其在阶段转变过程中的植物激素动态。在 57 株幼苗中,有 15 株在发芽后约 10 个月内开花。开花率为 26.3%。开花幼苗的平均高度和平均茎周长分别比未开花幼苗高 27 厘米和 0.56 厘米。开花幼苗主茎顶端成熟叶片中脱落酸浓度在 70 节时高于未开花幼苗,到 90 节时降至未开花幼苗以下。开花幼苗与未开花幼苗主茎顶端成熟叶片中 GA 4 和细胞分裂素浓度无显著差异。这些结果表明,在受控环境下采用水培有利于促进湖北地黄的早期阶段转变。此外,维持主茎顶端成熟叶片中较低的脱落酸浓度水平可促进湖北地黄的阶段转变。
摘要:少突胶质细胞祖细胞(OPC)代表神经胶质的亚型,引起中枢神经系统(CNS)中的髓磷脂形成细胞(CNS)。虽然OPC在开发过程中具有很高的增殖,但在成年期,它们的命运受到细胞外环境的严格影响,它们变得相对静止。在创伤性损伤和慢性神经退行性疾病中,包括自身免疫原状,少突胶质细胞发生细胞凋亡和脱髓鞘开始。成人OPC立即被激活;它们在病变部位迁移并扩散以补充受损区域,但它们的效率受到神经胶质疤痕的障碍,这主要是由反应性星形胶质细胞,小胶质细胞和抑制性细胞外基质成分的沉积所形成的屏障。一方面,神经胶质疤痕限制了病变的扩散,它也会阻止组织再生。旨在减少星形胶质细胞或小胶质细胞激活并将其转移到神经保护表型的治疗策略已被提出,而OPC的作用在很大程度上被忽略了。在这篇综述中,我们从OPC的角度考虑了神经胶质疤痕,分析其行为时,当病变起源并探索旨在维持OPC的潜在疗法时,以有效地区分和促进remer髓。
智力残疾(ID)是一种与认知和适应行为受损相关的神经发育障碍,代表了一个主要的医学问题。尽管ID患者出现了行为问题并在童年期间被诊断出来,但在成年期进行了啮齿动物模型中的大多数行为研究,在这种关键的时间窗口中表达的失踪早熟表型以强烈的脑部质量性为特征。在这里,我们有选择地评估了行为和认知过程的出生后发生,以及雄性RSK2-敲除棺材 - 慢性综合征的小鼠模型的产后脑发育,这是一种以ID和神经学异常为特征的X连锁疾病。虽然RSK2 -Knockout小鼠天生健康,但一项纵向MRI研究表明,瞬时次生小头畸形和海马和小脑体积的持续减少。从产后第4天(P4)延迟对感觉运动功能的延迟采集以及青春期自发和认知行为的改变,这共同代表神经发育障碍的标志。一起,我们的结果首次表明,RSK2是MAPK信号通路的效应子,在大脑和认知后发育中起着至关重要的作用。这项研究还提供了新的相关措施,以表征ID小鼠模型的产后认知发展并设计早期的治疗方法。
全家人的福祉资金(WFWF)朝着0-5和其他优先团体;扩展解决方案的忽视和增强福利(anew)项目;增强亲属护理;实施学龄儿童早期采用者项目;以及鼓舞人心的年龄托儿所项目。4.3随后,计划还概述了一系列行动,以改善在家庭,学校和社区中提供的学习和支持的可用性,可访问性和质量,而在婴儿,儿童或年轻人的成年期之旅的每个阶段,尤其是与更脆弱的群体有关。因此,在儿童贫困行动计划的6个优先团体中,有一个特别关注儿童和年轻人;儿童和年轻人有严重伤害的风险;有额外支持需求的儿童和年轻人(ASN);年轻照顾者;和有经验的儿童,年轻人和照料外生。4.4这个有针对性的重点是早期和更脆弱的群体,同时提高了普遍学习和支持的整体质量,旨在帮助解决短期和长期的不平等问题。这是支持和倾听劳动力和家庭的一系列行动的基础,包括高质量的对话,创伤知情的实践,风险评估培训,重要的是2 U,新的冠军董事会模式以及我自己的思想。它还认识到与其他服务(包括参与保护人员的服务)合作的重要性。它旨在帮助动员我们的总资产朝着共同的理事会,伙伴关系,社区和家庭优先事项。
尽管语言在我们的生活中显而易见,但我们快速有效地学习新单词和含义的至关重要能力在神经生物学上还是很糟糕的理解。传统的知识坚持认为语言学习(尤其是成年期)是缓慢而费力的。此外,其结构基础尚不清楚。即使在立即立即明显地进行了学习的行为表现,但在各种半类别中,先前的神经影像学工作已经在很大程度上研究了与数月或数年的实践相关的神经变化。在这里,我们涉及新词典的获取,特别关注与动作相关的语言的学习,这与大脑的运动系统有关。我们的结果表明,仅在新的单词学习后几分钟后,有可能测量和调节(使用运动皮层的经颅磁刺激(TMS))皮层微解原解重组。通过扩散的峰度成像(DKI)和基于机器学习的分析衡量的学习诱导的微观结构变化在前额叶,时间和顶壁新媒介位点显而易见,这可能反映了在学习任务期间立即立即反映出整合性词典词典 - 弹性处理和新记忆电路的形成。这些结果提出了快速新皮层编码机制的结构性基础,并揭示了模态和联想大脑区域在支持学习和单词获取方面的因果互动关系。
近年来,越来越多的人被诊断患有 ADHD,这是一种神经发育障碍,其特征是注意力不集中、多动和冲动(例如,Garfield 等人,2012 年)。尽管 ADHD 通常在儿童时期首次被诊断出来,但症状往往持续到成年期(Biederman、Petty、Evans、Small 和 Faraone,2010 年)。这种疾病可能会给人们的生活带来相当大的问题:ADHD 与较低的学业和职业成功有关,并且患抑郁症、焦虑症和成瘾的风险增加(Biederman 等人,2006 年;Faraone 等人,2000 年)。然而,在需要人们发挥创造力的情况下,ADHD 可能具有某些好处。先前的研究表明,创造力,即产生新颖而有用的想法的能力(Amabile,1996),受益于注意力分散和忽略环境中与任务无关的刺激的能力降低(Baird 等人,2012;Carson、Peterson 和 Higgins,2003)。在创造性任务期间,对与任务无关的信息进行分散处理可能会激活不常见的联想,从而产生原始的信息组合。此外,精力充沛、冲动和敢于冒险似乎有助于创造力(Barron 和 Harrington,1981;Feist,1998)。因此,容易分心、多动和冲动的人,例如患有 ADHD 的人,可能比没有这些症状的人更有创造力。事实上,研究表明,患有 ADHD 的成年人(与对照组相比),以及