手势和手势识别是人机交互讨论中越来越多遇到的术语。对于许多人(如果不是大多数人)来说,该术语包括字符识别、校对员符号识别、速记以及上一章“标记界面”中描述的所有类型的交互。事实上,每个身体动作都涉及某种手势才能表达出来。此外,手势的性质通常是确定动作感觉质量的重要组成部分。尽管如此,我们想在本章中单独讨论的是手势是表达和识别的交互,而不是通过传感器表达某种东西的结果。因此,我们使用 Kurtenbach 和 Hulteen (1990) 阐明的手势定义:
值得指出的是,第一批雷达系统早在 20 世纪 30 年代就已开发 [Watson-Watt 1945],从那时起,射频传感就已成为一个成熟的工程和应用科学领域。然而,目前的雷达硬件和计算方法主要是为主流雷达应用而开发的,这些应用通常涉及远距离检测和跟踪大型移动物体,例如空中和陆地交通管制、海事雷达、飞机防撞系统和外层空间监视以及地球物理监测等。此类应用的工程要求与现代消费应用不兼容,在现代消费应用中,传感器必须适合微型移动和可穿戴设备,在有限的计算资源上运行,在超短距离(即小于 5 毫米)内工作,消耗很少的功率,并以亚毫米精度跟踪复杂、高度可变形的弹性物体(例如人手而不是刚性飞机)的动态配置。我们不知道现有的雷达系统是否能满足上述要求。我们的研究表明,开发针对人机交互 (HCI) 优化的基于雷达的传感器需要从头开始重新思考和重新构建整个传感器架构,从基本原理开始。
值得指出的是,第一批雷达系统早在 20 世纪 30 年代就已开发 [Watson-Watt 1945],从那时起,射频传感就已成为一个成熟的工程和应用科学领域。然而,目前的雷达硬件和计算方法主要是为主流雷达应用而开发的,这些应用通常涉及远距离检测和跟踪大型移动物体,例如空中和陆地交通管制、海事雷达、飞机防撞系统和外层空间监视以及地球物理监测等。此类应用的工程要求与现代消费应用不兼容,在现代消费应用中,传感器必须适合微型移动和可穿戴设备,在有限的计算资源上运行,在超短距离(即小于 5 毫米)内工作,消耗很少的功率,并以亚毫米精度跟踪复杂、高度可变形的弹性物体(例如人手而不是刚性飞机)的动态配置。我们不知道现有的雷达系统是否能满足上述要求。我们的研究表明,开发针对人机交互 (HCI) 优化的基于雷达的传感器需要从头开始重新思考和重新构建整个传感器架构,从基本原理开始。
基于手势的传感器信息融合 (GBSIF) 是指将从环境中收集的传感器数据与 eGlove 上的运动传感器数据融合。eGlove 具有中央处理单元 (CPU),用于将手和手指的动作和位置融合成手势,如图所示。1.相同的 CPU 可用于融合来自环境的其他数据。在 GBSIF 中,操作员传输传感器阵列,但不主动确定将参与融合的传感器或将收集数据的目标对象,安装在 eGlove 上的传感器除外。数据是从环境和手套传感器收集的,这些数据可以在不同于用户节点的网络站点上融合和集成。因此,手势传感器数据和环境数据在适当的情况下被收集、融合和整合。然而,手势本身并不是选择信息源和控制融合过程的主要驱动力。
基于手势的传感器信息融合 (GBSIF) 是指将从环境中收集的传感器数据与电子手套上的运动传感器数据融合。电子手套具有中央处理单元 (CPU),用于将手和手指的动作和位置融合成手势,如图 1 所示。可以使用相同的 CPU 融合来自环境的其他数据。在 GBSIF 中,操作员传输传感器阵列,但不主动确定将参与融合的传感器或将收集数据的目标对象,安装在电子手套上的传感器除外。数据是从环境和手套传感器收集的,这些数据可以在不同于用户节点的网络站点上融合和集成。因此,手势传感器数据和环境数据在适当的情况下被收集、融合和集成。然而,手势本身并不是选择信息源和控制融合过程的主要驱动力。