抽象的酵母人工染色体克隆是一种用于基因组映射研究的有吸引力的技术,因为很大的DNA片段可以很容易地传播。然而,详细的分析通常需要广泛的印迹杂交技术的应用,因为人工铬的通常仅以每个单倍体基因组的拷贝形式存在。我们已经开发了一个克隆载体和宿主菌株,通过允许人工染色体的副本数量来减轻此问题。矢量包括一个conter粒粒料,可以通过更改碳源来打开或关闭。可以通过选择异源性胸苷激酶基因的表达来实现强大的人工染色体副本的强选择性压力。使用此系统时,大小约100至600千碱基的人造染色体很容易被放大10至20倍。选择性条件并未在测试的任何克隆中引起明显的后栅格。在放大的人造染色体克隆中的丝粒重新激活,从而稳定地维持了20代拷贝数。拷贝数控制在人造染色体分析的各个方面的应用。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
摘要当前,大多数本体论都是手动创建的,这是耗时且劳动力密集的。同时,大型语言模型(LLM)的高级功能已被证明在各个领域中有益,从而显着提高了文本处理和文本生成的效率。因此,本文着重于将LLMS用于本体学习。它使用手动本体构建方法作为促进本体学习LLM的基础。所提出的方法基于检索增强产生(RAG),并将其传递给LLM的查询基于手动本体论方法 - Lite本体论。已经对LLM的两种不同变体进行了实验,它们都以不同程度的程度证明了本体学学习的能力。这种方法显示了使用LLMS(半)自动化本体学习学习的方向的有希望的初始结果,并使没有先前领域专业知识的人的本体论施工过程更容易。最终的本体论是由域专家评估的,并根据定义的标准对其进行了排名。基于评估结果,最终的本体论可以用作基本版本,但是它需要域专家的进一步微调以确保其准确性和完整性。
8 DeepBiome。Co. Ltd.,上海200031,中国 *通信:yongjunwei@zzu.edu.cn(y.w. ); liming@henau.edu.cn(M.L。 ); zhanglei@logictek.cn(L.Z.) 收到:2024年10月18日;接受:2025年2月21日;在线发布:2025年2月22日; https://doi.org/10.59717/j.xinn-life.2024.100120©2025作者。 这是CC下的开放访问文章(https://creativecommons.org/licenses/4.0/)。 引用:Dong P.,Chen Y.,Wei Y.等。 (2025)。 dix-seq:用于快速扩增子数据分析的集成管道。 创新生活3:100120。 在过去十年中,测序技术的快速进步推动了Amplicon Metagenome的广泛采用。 但是,当前的Amplicon数据分析软件/管道通常需要手动干预跨越多个步骤,因此需要清楚了解参数,并阻碍缺乏经验的用户自动化其工作流程。 在这里,我们介绍了Dix-Seq,这是一种完全容器化的工具,用于快速,自动化和可扩展的扩增子数据分析。 使用一个单个命令,DIX-Seq可以将原始扩增子序列处理为各种统计和可视化结果,生成基于HTML的报告和恢复的日志文件。 dix-seq利用单个参数表可以大大简化其命令行接口,从而使其不受欢迎的用户更容易实现,同时改善了研究可重复性。 DIX-SEQ的模块化设计使得将新方法和数据库的快速采用到其软件框架中。Co. Ltd.,上海200031,中国 *通信:yongjunwei@zzu.edu.cn(y.w.); liming@henau.edu.cn(M.L。); zhanglei@logictek.cn(L.Z.)收到:2024年10月18日;接受:2025年2月21日;在线发布:2025年2月22日; https://doi.org/10.59717/j.xinn-life.2024.100120©2025作者。这是CC下的开放访问文章(https://creativecommons.org/licenses/4.0/)。引用:Dong P.,Chen Y.,Wei Y.等。(2025)。dix-seq:用于快速扩增子数据分析的集成管道。创新生活3:100120。在过去十年中,测序技术的快速进步推动了Amplicon Metagenome的广泛采用。但是,当前的Amplicon数据分析软件/管道通常需要手动干预跨越多个步骤,因此需要清楚了解参数,并阻碍缺乏经验的用户自动化其工作流程。在这里,我们介绍了Dix-Seq,这是一种完全容器化的工具,用于快速,自动化和可扩展的扩增子数据分析。使用一个单个命令,DIX-Seq可以将原始扩增子序列处理为各种统计和可视化结果,生成基于HTML的报告和恢复的日志文件。dix-seq利用单个参数表可以大大简化其命令行接口,从而使其不受欢迎的用户更容易实现,同时改善了研究可重复性。DIX-SEQ的模块化设计使得将新方法和数据库的快速采用到其软件框架中。当前,已将21个以上的算法,软件和第三方程序集成到DIX-Seq中的八个模块中,而越来越多。这种方法还允许经验丰富的用户微调工作流程,从而促进定制分析。在实际案例研究的数据集上执行的基准测试了DIX-Seq的能力,该功能在生成统计信息和提取生物学上有意义的模式的完整数字中生成了发布的数字。此外,它在检测模拟测序深度下降的方差方面仍然非常有效,结果在所有和某些方面(例如植物网络多样性和Pearson的相关性),结果保持稳健至11000和1000的深度。总而言之,Dix-Seq是用于扩增数据分析的方便但高度可自定义的工具,使其成为入门级和经验丰富的用户的理想选择。
抽象的β-内酰胺抗生素是人类和兽医医疗保健中最应用的抗菌剂。因此,β-内酰胺抗性是一个主要的健康问题。AMPCβ-内酰胺酶的基因扩增是导致大肠杆菌中从头β-LAC TAM抗性的主要因素。但是,放大和随附的DNA突变的时间过程尚不清楚。在这里,我们研究了通过逐步增加阿莫西林浓度引起的抗药性演变,AMPC扩增和AMPC启动子突变的进展。AMPC启动子突变发生在第2天,而大约八倍的扩增发生在阿莫西林暴露超过6天后。放大和启动子突变的组合在22天后将AMPC mRNA水平提高了200个。a是1插入在野生型(WT)和AMPC基因互补菌株(COMPA)的耐药性诱导后的扩增连接中的插入,但在∆ AMPC中未鉴定,这表明扩增取决于移动遗传元件的转移。为了阐明基因突变与AMPC扩增之间的相关性,分析了WT,∆ AMPC和COMPA在电阻演化过程中获得的DNA突变。与进化的∆ AMPC相比,进化的WT中没有几种引起抗性突变,而在应力反应中积累了更多的突变。抗阿莫西林的ΔAMPC没有显示出原始AMPC位置周围片段的扩增,而是在另一个位置表现出很大的重复或一式三次,这表明重复基因在耐药性发展中的重要作用。
振动共振扩增通过使用添加性非谐波高频调节来填充弱的低频信号。对综合非线性纳米腔中弱信号增强的实现对于光信号可能具有低功率的纳米光应用引起了极大的兴趣。在这里,我们报告了在热式光子光子晶体彩态机械谐振器中对vi-Brational共振的实验性观察,其放大率高达+16 dB。可以使用膜的机械谐振来有趣的表征,该膜与腔与腔体的强热耦合。相变和双孔电势已被广泛利用,以放大或检测弱信号。1在科学的各种领域观察到的这种一般的物理概念是振动恢复2(VR)现象的核心。作为与众所周知的随机共振的类比,3 VR使用高频(HF)的周期性信号来实现低频(LF)输入信号。理论上已经在不同类型的非线性系统中进行了研究,例如在神经网络中,4在可激发系统5或生物网络中。6
MET 在人类癌症中的作用的确立导致了小分子抑制剂的开发,其中许多目前正在进行临床试验。迄今为止,人们对它们的治疗效果和可能出现的治疗耐药性一无所知,这也是其他受体酪氨酸激酶 (RTK) 抑制剂经常观察到的问题。为了预测获得性耐药的机制,我们通过用浓度不断增加的 MET 小分子抑制剂 PHA-665752 或 JNJ38877605 处理 MET 成瘾细胞来产生耐药细胞。耐药细胞显示 MET 基因扩增,导致 MET 表达增加和组成性磷酸化,随后是野生型 (wt) KRAS 的扩增和过表达。携带 KRAS 扩增的细胞逐渐失去对 MET 的依赖性并获得对 KRAS 的依赖性。我们的结果表明,MET 和 KRAS 扩增是特定 MET 抑制剂耐药性的普遍机制,因为在两种小抑制剂和不同组织型的不同细胞系中观察到了类似的结果。据我们所知,这是第一份报告显示 wt KRAS 的过度表达可以克服 RTK 抑制剂的抑制作用。鉴于针对其他酪氨酸激酶的抑制剂的耐药性细胞模型已经预测并证实了临床发现,我们的结果为预防和/或克服耐药性的策略提供了见解。
乙型肝炎病毒(HBV)全基因组测序(WGS)目前受到限制,因为许多临床样品的DNA病毒载荷(VL)低于使用当前测序方法产生完整基因组所需的阈值。我们使用基于探针的捕获和瓷砖放大器PCR(Hep-tile)开发了两种泛基因型病毒富集方法,用于HBV WGS。我们使用模拟样品证明了这两种富集方法都是泛基因型(基因型A-J)。使用临床样品,我们证明了HEP-TILE放大成功地放大了最低的HBV VL测试(30 IU/ mL)的完整基因组,并且可以使用纳米孔和Illumina平台对PCR产物进行测序。基于探针的捕获,具有Illumina测序需要VL> 300,000 IU/mL,以生成全长HBV基因组。捕获 - 紫罗兰和Hep-tile-nanopore管道在具有已知DNA序列的模拟样品中具有100%的共识测序精度。一起,这些方案将促进HBV序列数据的产生,从而使HBV分子流行病学的更准确,更具有代表性的描述,对持久性和发病机理进行启示,并增强对感染及其治疗结果的理解。
1 卢旺达生物医学中心 (RBC) 疟疾和其他寄生虫病科,卢旺达基加利。 2 法国巴黎巴斯德研究所疟疾遗传学和抗药性研究中心。 3 美国纽约哥伦比亚大学欧文医学中心微生物学和免疫学系。 4 瑞典哥德堡大学。 5 美国马里兰州巴尔的摩市母婴生存计划/JHPIEGO。 6 影响卢旺达疟疾协会,卢旺达基加利。 7 卢旺达基加利卫生部。 8 国家参考实验室 (NRL)、BIOS/卢旺达生物医学中心 (RBC),卢旺达基加利。 9 美国总统疟疾倡议,卢旺达基加利。 10 法国巴黎生物信息学和生物统计学中心——计算生物学系。 11 法国巴黎巴黎大学科钦医院科钦研究所 INSERM 1016 寄生虫学-真菌学系。 12 西非和中非遏制疟疾行动,卢旺达基加利。 13 瑞士日内瓦世界卫生组织全球疟疾规划署。 14 美国纽约州纽约市哥伦比亚大学欧文医学中心医学系传染病科。 15 以下作者贡献相同:Aline Uwimana、Eric Legrand。 ✉电子邮件:Aline.Uwimana@rbc.gov.rw; dmenard@pasteur.fr
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。