多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
摘要:与大规模硅制造兼容的硅光子学是一个破坏性的光子平台,表明对行业和研究领域(例如量子,神经形态计算,LIDAR)具有重要意义。尖端应用,例如高容量相干的光学通信和杂差激元,已升级对集成窄线宽激光源的需求。为此,这项工作旨在通过开发高性能混合III-V/硅激光来满足这一要求。开发的集成激光器利用单个微孔谐振器(MRR),演示了超过45 dB的侧模式抑制比(SMSR)的单模操作,激光输出功率高达16.4 mW。远离需要多个复杂控制的当前混合/异质激光体系结构,开发的激光体系结构仅需要两个控制参数。重要的是,这是通过降低表征这些激光器的复杂性来简化工业采用的。通过简洁的结构和控制框架,实现了2.79 kHz的狭窄激光线宽,低相对强度噪声(RIN)达到-135 dB/hz。此外,在测量10 dB的信噪比(SNR)的情况下,证明了12.5 GB/s的光学数据传输。
为什么全球对Beovu Brolucizumab的需求增加?AMD的上升率上升是推动Beovu brolucizumab的需求的主要因素。amd是一种主要影响老年人的进行性眼疾,导致视力中心的视力障碍。随着预期寿命的上升,出生率的下降以及医疗保健的持续进步,全球老龄化人口的持续增长。beovu brolucizumab通过抑制血管内皮生长因子(VEGF)来治疗AMD,这有助于维持视网膜健康并减缓视力丧失。
ADB - Asian Development Bank AMC - Annual Maintenance Contract CEMP - Construction Environment Management Plan CFL - Compact Fluorescent Lamp CPCB - Central Pollution Control Board DDR - Due Diligence Report DISCOMs - Distribution Companies EA - Executing Agency EARF - Environmental Assessment and Review Framework EESL - Energy Efficiency Services Limited EHSS - Environmental, Health, Safety and Social EIA - Environmental Impact Assessment EMP - Environmental Management Plan ESCO - Energy Service Company ESMU - Environmental and Social Management Unit FI - Financial Intermediary GEF - Global Environment Facility GoI - Government of India GRC - Grievance Redress Committee GRM - Grievance Redress Mechanism IEE - Initial Environmental Examination LED - Light-Emitting Diode MoEF&CC - Ministry of Environment, Forest and Climate Change MW - Mega Watt NMEEE - National Mission on Enhanced Energy Efficiency OEM - Original Equipment Manufacturer PMU - Project Management Unit QPR -季度进度报告REA-快速环境评估SDU-可持续发展单元SPCB-州污染控制委员会SPS-保障政策声明TSDF-治疗,存储和处置设施ULB ULB - 城市本地机构
为生物搜索中使用的显微镜图像仍然是一个重要的挑战,尤其是对于跨越数百万图像的大规模实验。这项工作探讨了经过越来越较大的模型骨架和显微镜数据集训练时,弱监督的clasifirers和自我监管的蒙版自动编码器(MAE)的缩放属性。我们的结果表明,基于VIT的MAE在一系列任务上的表现优于弱监督的分类器,在召回从公共数据库中策划的已知生物学关系时,相对实现的相对效果高达11.5%。此外,我们开发了一种新的通道敏捷的MAE架构(CA-MAE),该体系结构允许在推理时输入不同数字和通道的图像。我们证明,在不同的实验条件下,在不同的实验条件下,CA-MAE通过推断和评估在显微镜图像数据集(Jump-CP)上有效地概括了,与我们的训练数据(RPI-93M)相比,通道结构不同。我们的发现促使人们继续研究对显微镜数据进行自我监督学习,以创建强大的细胞生物学基础模型,这些模型有可能促进药物发现及其他方面的进步。与此工作发布的相关代码和选择模型可以在以下网址找到:https://github.com/ recursionpharma/maes_microscopy。
在关于国际废物贸易的辩论中,对资源效率和回收利用的关注逐渐开始伴随着否定环境外部性的关注。在这种情况下,我们研究了扩展生产者责任(EPR)对废物蝙蝠出口(WB)的影响。EPR被认为是“废物市场化”的关键政策。另一方面,WB是一种危险废物,也含有高浓度的关键原材料。因此,它们对于恢复关键资源的战略重要性,同时需要适当的环境管理。因此,对于处理WB的情况以及如何影响相关策略的情况至关重要。我们的结果基于重力框架中的差异差异模型,在EPR实施与其他废物的趋势相结合后,WB出口显示出一致的增加。此结果可能是间接的
稀疏的高斯过程。在稀疏的高斯过程近似过程中已经进行了一系列工作,可以追溯到Snelson和Ghahramani(2006),Qui〜nonero-Candela和Rasmussen(2005)等。这些稀疏方法中的大多数都依赖于一个汇总的一组,称为诱导点,主要是选择这些点的确切方式。在Titsias(2009)中首先考虑了诱导点的变异学习,并被证明会导致显着的性能提高。而不是在非变化稀疏模型中使用近似边缘的GP可能性,而是在确切的GP边际可能性上的下限被得出并用作训练目标。与我们工作相关的另一种方法是Hensman等人的随机变异方法。(2013),作者提出了一个稀疏模型,除了降低GP复杂性外,还可以在小型批次中训练,从而使(极其)大型数据集使用GP模型。
摘要:我们表明,通过扩展主动推理框架,可以在目的论框架中制定目标导向的行动规划和生成。所提出的模型建立在变分递归神经网络模型上,具有三个基本特征。这些特征是:(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察来理解目标;(3)该模型根据从过去的感官观察推断出的当前状态的最佳估计,为给定目标生成未来的行动计划。通过在模拟移动代理以及执行对象操作的真实人形机器人上进行实验来评估所提出的模型。
Volante在其服务司法管辖区的当前法律框架内运作。本文档仅出于信息目的,不应将其解释为法律,财务或投资建议。Volante对本文档中的任何错误或错误不承担任何责任,并且可以在未经事先通知的情况下更新内容。所有争议将根据适用司法管辖区的相关法律管辖。由于监管不确定性,我们的白皮书中详细介绍的计划的发展和部署可能会面临局限性,或者在某些领域无法获得限制。这些举措可能需要进行重组,或者可能部分或完全不可用,具体取决于监管环境。Volante可能取决于在某些发展阶段与有执照的第三方实体的关系。这些实体的许可状态的变化可能会影响Volante利用其服务的能力。
本文介绍了GenH2R,这是一个学习基于远见的人类到机器人(H2R)han-dover技能的框架。目标是为机器人配备能够以各种复杂轨迹的人类传递的几何形状可靠接收对象。我们通过通过全面的解决方案进行大规模学习H2R移交,包括程序模拟资产创建,自动演示式概述和有效的模仿学习。我们利用大型3D模型存储库,敏感的GRASP生成方法和基于曲线的3D动画来创建名为GenH2R-SIM的H2R交换模拟环境,并通过三个尺度级传递了现有模拟器中现有模拟器中的场景数量。我们进一步引入了一种蒸馏友好的演示生成方法,该方法自动产生了一百万个适合学习的高质量演示。最后,我们提出了一种4D模仿的学习方法,该方法通过将来的预测目标增强,以将示范示例提炼为视觉运动切换政策。在所有情况下,模拟器和现实世界中的实验评估都表现出比基线的显着提高(至少 +10%的成功率)。
