超明显点模式可以通过超均匀缩放指数α> 0进行分类,该指数α> 0,该指数符合结构因子s(k)的幂律缩放行为,这是波数k。| K |在起源附近,例如s(k)〜| K | α在s(k)随着k连续变化为k→0。在本文中,我们表明可传播性是确定s(k)不连续的准膜系统的有效方法,并由一组密集的bragg峰组成。它已在[Phys。修订版e 104,054102(2021)],对于有限α的培养基,可以将过剩可传播性s(∞)-s(t)的长时间行为拟合到形式t - (d-α) / 2的幂定律中,在其中d是空间维度,以准确提取α,以使α准确提取α。我们首先将准二极管和极限 - 周期点模式转换为两相介质,通过将它们映射到相同的非重叠磁盘的包装上,其中与磁盘的空间内部代表一个相位,并且在其外部空间代表了第二阶段。然后,我们计算包装的光谱密度〜χv(k),并最终计算其多余的散布性的长期行为。特别是我们表明,多余的传播性可用于准确提取一维(1D)极限 - 周期性倍加倍链(α= 1)和1D Quasicrystalline fibonacci链(α= 3)至0。02%的分析已知的确切结果。此外,我们获得α= 5的值。97±0。06对于二维penrose瓷砖,并提出了合理的理论参数,强烈表明α完全等于六个。我们还表明,由于此处检查的结构的自相似性,可以截断用于计算散布性并获得α准确值的散射信息的小k区域,并且与未截断的情况下的偏差很小,该案例随着系统尺寸的增加而降低。这强烈表明,可以从适度尺寸的有限样品中获得α的良好估计。此处描述的方法提供了一个简单而通用的过程,可以准确表征Quasrystalline中存在的大规模翻译顺序,并在任何自相似的空间维度中都具有极限 - 周期介质。此外,从编码〜χV(k)中编码的这些两相介质中提取的散射信息可用于估计其物理性质,例如它们的有效动态介电常数,有效的动态弹性常数和流动性。
在研究负面公共事件时,不少研究者关注公众心理健康水平,心理韧性是一个常用的指标。心理韧性又称心理弹性,是指能够减轻、适应甚至克服突发事件对心理健康负面影响的一种稳定的心理特征(2)。心理韧性的存在使得公众能够自我调节和应对扩散性危机带来的情绪波动,对维持事件后心理健康至关重要(3,4)。从安全信息学和信息经济学的角度看,化解扩散性危机的关键在于信息管理,而不确定风险的防范也取决于信息的可获得程度。同样,事件过程中负面情绪的缓解也取决于公众可获得的信息量,具体而言是公众对危机现状和潜在影响的了解。当公众无法获取必要的信息时,可能会产生恐慌、焦虑等负面情绪(5)。因此,扩散性危机事件发生后,民众的心理韧性会受到信息传播程度的影响,因此扩散性危机事件的风险管理需要严格控制信息传播的程度。
摘要 神经血管耦合是一种关键的大脑机制,通过这种机制,血流变化伴随着局部神经活动。神经血管耦合的破坏与包括痴呆症在内的多种神经系统疾病的发展和进展有关。在这项研究中,我们检查了 9 至 12 个月大小鼠的皮质血流动力学,这些小鼠模拟了阿尔茨海默病 (J20-AD) 和动脉粥样硬化 (PCSK9-ATH)。我们报告了动脉粥样硬化的新发现,其中神经血管衰退的特征是血容量显著减少、氧合血红蛋白和脱氧血红蛋白水平改变,以及全身神经炎症。在共病混合模型 (J20-PCSK9-MIX) 中,我们报告海马淀粉样蛋白-β 斑块增加了 3 倍。一个关键的发现是,由于电极插入大脑而导致的皮质扩散性抑制 (CSD) 在患病动物中更严重,并导致长时间的缺氧。这些发现表明,系统性动脉粥样硬化可能对神经血管健康有害,并且患有心血管合并症可能会加剧已有的阿尔茨海默病相关的淀粉样斑块。
1.2. 背景。随机环境中的定向聚合物是非平衡统计力学中无序系统的典型模型,自 20 世纪 80 年代以来得到了广泛的研究。在这里,我们不会试图回顾大量的文献,而是参考优秀的书籍 [ 19 ] 及其引用的参考文献。该模型的一个显着特征是在所谓的低温状态下的局部化现象,这是一种物理上有趣的状态,其中聚合物路径被限制在能量上有利的一小组状态中。在高温状态下,路径表现出与布朗运动相同的扩散性,这更容易分析。当温度较低时,路径预计会表现出超扩散性,同时局限于某个优选区域。虽然这种行为众所周知很难量化,但近年来数学研究取得了重要进展。这涉及端点位移和自由能涨落的研究,属于 1 + 1 KPZ 普适性类别 [ 2 , 5 , 6 , 11 , 12 , 13 , 14 , 25 , 26 , 28 , 37 , 38 , 40 , 41 ],也涉及局域化行为的定量分析 [ 4 , 8 , 9 , 10 , 16 , 18 , 20 , 21 , 22 , 23 , 29 ]。
在土壤环境中,出于自适应原因,真菌VOC被认为是发展的,以促进交流并充当许多功能的发展信号。通过土壤的气态和液体相通过气体和液体相位的波动性和扩散性,赋予它们充当信号分子的能力,能够在多孔空间中易于移动,从而在长距离上介导通信。此外,真菌产生的不同化合物具有修改植物产生的VOC的特征,以使它们可以改善对害虫和病原体的攻击或改善对不同非生物压力条件的反应的防御[3]。取决于植物收到真菌VOC的刺激的方式,数量和力矩,反应可能会有所不同。
石墨烯能够通过提高水合水泥的热扩散性来预防早期热裂纹的能力,这与预铸造的混凝土产生特别相关,因为混凝土块在高温下在高温下烘烤在高温下,并且较大的块会导致冷却时导致裂纹的温度梯度。通过专注于这些相对较高的价格混凝土产品,不仅将石墨烯用作增强填充剂,而且还将其提供用于解决行业挑战或目标的特殊财产增强功能,石墨烯可以在各种水泥和混凝土市场领域中取得成功。
组织和细胞,证明了其在哺乳动物细胞研究中的适用性和高预测能力。在由大脑基金会资助的项目中,Shabala 博士将使用 MIFE 技术研究偏头痛的机制。偏头痛是一种复杂的、致残的大脑疾病,表现为经常剧烈的头痛发作,对光、声音和头部运动有感觉敏感性。偏头痛的患病率为 12%,对经济和社会产生了重大影响。尽管在该领域进行了相对广泛的研究,但偏头痛的病因仍然未知。皮质扩散性抑制 (CSD) 与偏头痛和头痛诱因有关,离子稳态与 CSD 的产生和传播密切相关。Shabala 博士将使用 MIFE 技术观察关键离子对引发 CSD 的因素的反应动力学。该项目旨在
摘要。元宇宙是数字经济发展的新兴产业,亟待技术创新突破,推动新一轮发展。以ChatGPT为代表的AIGC技术具有渗透性、扩散性和颠覆性,以符合人类逻辑思维和习惯的人机交互方式,为元宇宙发展提供了新的内容供给范式。元宇宙将在基础层、关键技术层、应用层等获得新一轮发展动力,带动新型业务快速发展;同时,沉浸式的人机交互将放大AIGC这把双刃剑的负面影响,带来更复杂、更棘手的行业监管、技术伦理等治理问题。总之,发展并非一朝一夕,需要长期研究核心技术,围绕大算力快速构建新型基础设施,协同发展支撑安全可控治理体系。
共享经济通过建立不断更新的平台,在多个行业领域获得了关注,其商业模式的核心是数字中介和点对点交换。大多数关于共享经济的研究都涉及现象层面,或侧重于单个平台的运营。本文通过提出以下问题将各种共享经济平台联系起来:共享经济是如何传播到新平台的?本文的目的是解释共享经济商业模式的传播模式。研究结果指出,一种无缝、不引人注目的模式呼应了不同行业之间共享经济商业模式的特点,以避免竞争,同时在不断更新的资源环境中重现活动。本文继续探索与工业营销相关的共享经济,从单个平台转向它们引导新平台的方式,同时承认新平台的创新模式高度依赖于通过承认自己是榜样继任者而产生的授权。这种传播机制重新定义了创新的新颖性、适应性和扩散性,并提出了新的见解来理解当前的商业格局在可能转变为新的运营逻辑的情况下会如何发展。
覆盖有金属板的屋顶具有很高的蒸气扩散性,因此几乎没有水分可以通过覆盖物逸出。因此,足够渗透的蒸气延迟器必须使水分向房间侧干燥,尤其是在温暖的夏季。为了比较不同的蒸气阻滞剂,在Fraunhofer建筑物理学研究所(IBP)的户外测试领域进行了广泛的调查。图1显示了Holzkirchen(顶部)的测试区域的概述和用于调查的测试室(底部)。由于屋顶的南部平面上的高温以及金属覆盖的高温,所谓的夏季冷凝发生。这意味着水分从屋顶组件的热外部扩散到凉爽的房间侧,并暂时增加蒸气阻滞剂的湿度。上面提到的室外测试表明,聚酰胺片会导致最低的木材水分水平,因此可以确认这种蒸气延迟器的正确功能。,这表明在屋顶组件中发生了广泛的霉菌生长。这些造成的损坏是更详细地研究允许或促进霉菌生长所必需的条件的动机。