设计用于锂离子电池电池的温度控制需要了解其组件的热性能。的特性,例如热容量,导热率和热扩散率,表征了细胞内单个和复合材料的热传递。这些参数对于开发电池热模型和设计热管理系统至关重要。可以通过热扩散率和热容量测量来确定薄色组件的热导率,例如电极中使用的电导率。这项工作探讨了测量覆盖在薄铜电流收集器上的电池阳极材料的热导率的方法。这些测量中获得的结果对于电池热管理系统的开发,优化和设计很重要。
本论文由孟菲斯大学数字共享资源免费提供给您,供您开放访问。它已被孟菲斯大学数字共享资源的授权管理员接受并纳入电子论文和学位论文。如需更多信息,请联系 khggerty@memphis.edu。
摘要。由于高肿胀和保留能力的优势,膨润土通常被用作地热结构应用的热背填充材料之一。然而,纯膨润土的低热扩散率表明,从地热系统到周围地面的热传导不良,这导致地热系统的热不稳定性。砂比膨润土具有很高的热扩散性,而水的保留能力低。这项研究介绍了实验室研究的结果,并加入沙子,膨润土的热扩散率提高。在实验研究中,与膨润土混合了20-80%的砂含量。此外,在不同的干密度(1.0-1.4 mg/m 3)和水分含量(0-53%)下,使用瞬态热流探针方法在实验室中测试了膨润土,沙子和膨润土 - 盐酸盐和混合物。研究了体积水含量(干密度和水分含量的结合作用)和砂含量对测试样品的热扩散率的影响。实验结果与先前开发的经验模型进行了比较,这些模型基于土壤的体积水分含量和质地。此外,根据Spearman相关系数在各种岩土技术参数和工程背部填充材料的热扩散率之间讨论了侵蚀参数。从结果开始,已经观察到,干燥密度,土壤纹理和饱和度是最有影响的参数,它是嵌入带有工程后的后填充物质的热源附近的热水传递。
腐蚀风险对满足在恶劣环境下使用的微电子设备的严格可靠性要求构成挑战。微电子设备通常封装在聚合物封装材料中,以防止腐蚀。然而,这些聚合物并非完全密封,因此允许少量离子和水分进入设备,这可能会导致微电子电路腐蚀。为了提高和预测设备的可靠性,量化这些材料中的离子扩散率非常重要。以前报告的离子扩散率值对于同一类材料来说相差多个数量级。在这里,我们使用三种实验方法调查这种差异的原因:(i) 盐水浸泡、(ii) 扩散池测量和 (iii) 瞬态电流测量。测试了几种材料,例如硅树脂、环氧树脂和聚酰胺,以涵盖微电子行业使用的广泛聚合物。我们发现,差异可能是由于离子扩散率对聚合物中的水分含量以及溶质的盐浓度和 pH 值有很强的依赖性。此外,我们发现,极低的离子扩散率会导致测量时间过长,因此样品中因污染、泄漏或微小缺陷而导致误差的风险很大。
摘要:微凝胶是水的交联聚合物,被广泛用作组织工程和再生医学的脚手架材料中的胶体构建块。微凝胶可以根据其聚合物结构,交联密度和制造方法来控制其刚度,肿胀程度和网格尺寸 - 所有这些都会影响其功能和与环境的相互作用。当前,缺乏对聚合物组成如何影响软微凝胶的内部结构以及该形态如何影响特定生物医学应用的内部结构。在本报告中,我们系统地改变了聚乙烯甘氨酸丙烯酸酯(PEG-AC)前体的结构和摩尔质量,以及它们的浓度和组合,以洞悉影响棒状微凝胶的内部结构的不同参数。我们表征了来自PEG-AC前体产生的散装水凝胶和微凝胶中丙烯酸酯基团在光聚合过程中丙烯酸酯基团的转化。此外,我们研究了细胞 - 微凝胶的相互作用,并且观察到改善的细胞在具有更容易接近的RGD肽的微凝胶上扩散,并且刚度在20 kPa至50 kPa的范围内导致细胞的生长更好。
1 Laboratory of Study of Microstructures, Onera-CNRS, University Paris-Saclay, BP 72, 92322 CHECTILLON CEDEX, France 2 University Paris-Saclay, UVSQ, CNRS, GEMAC, 78000, Versailles, France 3 Tim Taylor Department of Chemical Engineering, Kansas State University Manhattan, KS 66506, USA 4 Laboratory of Multimate and Interfaces, UMR CNRS 5615, Univ Lyon University Claude Bernard Lyon 1, F-69622 Villeurbanne, France 5 Laboratory Mateis, UMR CNRS 5510, Univ Lyon, INSA Lyon, F-69621 Villeurbanne, France 6 Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044,日本7电子和光学材料研究中心,国家材料科学研究所,1-1 Namiki,Tsukuba,Tsukuba 305-0044,日本(日期:
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
各向异性,轴向,均值和径向扩散率,以调查整个WM区域并改善部分体积效应。与对照组相比,在所有DTI衍生的度量指标中,发现BD儿童的radial扩散率量化WM髓鞘化的主要更高和Corona Radiata中的radial扩散率主要更高。与年龄相关的逐渐降低扩散率和在健康对照组中的分数各向异性增加,在BD组中发现了与年龄相关的趋势线,并在高风险组中观察到了中间的发育率。call体和电晕辐射中的较大径向扩散率与较短的响应时间显着相关,该响应时间较短,表明BD组的冲动性较高,而健康对照组在健康对照组中没有发现这种相关性。这项工作证实了小儿BD的渐进性,并表明与情感调节和对冲动敏感的WM微结构破坏可能是小儿BD进展的生物标志物。
功能分级的材料(FGM)具有从一个区域到另一个区域的平稳差异,近年来一直受到越来越多的关注,尤其是在航空航天,汽车和生物医学领域。但是,他们尚未发挥全部潜力。在本文中,我们探讨了在药物输送的背景下,FGM的潜力,在此,独特的材料特征为所需应用提供细化药物释放的潜力。具体来说,我们基于空间变化的药物扩散率开发了从薄膜FGM中释放药物的数学模型。我们证明,取决于扩散率的功能形式(与材料特性有关),可以获得广泛的药物释放曲线。有趣的是,这些释放曲线的形状通常无法从具有恒定扩散率的均匀介质中实现。