层析成像是分析内部成分排列的一种方法。医学可能是利用这种方法并推动其发展的最著名学科。[1–3] 然而,层析成像也已应用于其他研究领域,如材料科学[4,5]、生物学[6]、考古学[7]甚至流体动力学[8],并且在工业领域也越来越受到认可,例如用于质量控制[9]或无损检测[10]。图像采集与实时重建算法[11]、高级图像分析[12]、特征分割和识别分析算法[13,14]与现代机器学习工具[15,16]的结合增强了这种方法的潜力。如今,实验室扫描仪普及且功能强大,受益于改进的空间和时间分辨率,尽管尖端实验仍然局限于高亮度同步加速器和X射线自由电子激光器。可以在极短的时间内获得高空间分辨率。[17,18] 对高空间和时间分辨率、大视野和高总记录时间的需求意味着目标的冲突。文献中概述了不同设备可用的实际速度和分辨率。[19–21]
研究问题、变量和操作定义、假设、抽样。开展和报告研究的道德规范 研究范式:定量、定性、混合方法 研究方法:观察、调查 [访谈、问卷]、实验、准实验、实地研究、跨文化研究、现象学、扎根理论、焦点小组、叙述、案例研究、人种学 心理学中的统计学:集中趋势和离散度的测量。正态概率曲线。参数 [t 检验] 和非参数检验 [符号检验、Wilcoxon 符号秩检验、Mann-Whitney 检验、Kruskal-Wallis 检验、Friedman]。功效分析。效应量。相关分析:相关 [乘积矩、等级顺序]、偏相关、多重相关。特殊相关方法:双列、点双列、四分法、phi 系数。回归:简单线性回归,多元回归。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
金属添加剂制造中的摘要,移动的热源会导致温度和应变的空间和时间依赖性变化,从而导致部分变形。失真预测和优化的沉积参数可以提高生成的组件的尺寸精度。在这项研究中,通过实验验证了一种分析方法,用于建模覆盖高度和底物厚度的效果。此外,通过实验确定扫描模式与层高和底物厚度的函数的影响。分析模型基于凉爽的相位机理,并假定每个沉积层的恒定热收缩力的形成。与类似的实验条件相比,该模型可以准确预测实验校准后纵向悬臂失真。对于多层沉积,扫描模式对薄壁底物的失真影响最大。具有纵向扫描载体的优化沉积策略导致降低高达86%。结果强调了机械建模和扫描策略优化的潜力,以提高增材制造领域工业应用的形状准确性。
摘要:家禽业在全球农业中起关键作用,家禽是蛋白质的主要来源,并为经济增长做出了重大贡献。但是,该行业面临着与重复性且苛刻的劳动密集型任务相关的挑战。自动化已成为提高运营效率并提高工作条件的关键解决方案。具体来说,机器人的操纵和对象的处理在工厂中变得无处不在。但是,存在挑战以预先识别和引导机器人处理一堆具有相似纹理和颜色的物体。本文着重于开发旨在自动化鸡的机器人解决方案的视觉系统,该机器人解决过程是一种基本的,但在家禽加工中是一种基本但身体上剧烈的活动。为了解决通用实例分割模型在识别重叠对象中的限制,开发了一种具有成本效益的双重活性激光扫描系统来生成对象上的精确深度数据。将经过良好的深度数据生成与RGB图像集成在一起,并将其发送到实例分割模型以进行单个鸡检测和识别。这种增强的方法显着改善了该模型在处理涉及重叠鸡的复杂场景中的性能。具体而言,RGB-D数据的集成将模型的平均平均精度(MAP)检测准确性提高了4.9%,并显着改善了中心偏移 - 本研究中引入的定制度量标准,以量化地面真相蒙版中心与预测的面具中心之间的距离。精确的中心检测对于开发未来的机器人控制解决方案至关重要,因为它可以确保在鸡肉重定过程中准确抓住。中心偏移量从22.09像素(7.30 mm)降低到8.09像素(2.65 mm),证明了该方法在缓解闭塞挑战和增强视觉系统的可靠性方面的有效性。