适配器。11。保持正确的平衡和基础。确保地板不是滑的,并穿着防滑鞋。12。让儿童和未经授权的人远离工作区域。13。不要按压,压力或损坏LCD显示屏。14。不要在强磁场附近使用。15。不受过多的力或冲击。16。请勿掉落或抛出数字扭矩适配器。17。不要将数字扭矩适配器留在暴露于过多热量,湿度或直射阳光下的任何地方。18。不要使用有机溶剂(例如酒精或稀释剂)进行清洁。19。不要浸入水或任何其他液体中。20。不要分解数字扭矩适配器。21。为了确保准确的测量,需要定期重新校准。将数字扭矩适配器带到专家。22。使用后,用柔软的干布清洁,然后将其存放在远离任何热源的安全,防儿童的位置。
效率 HTM 需要放气,等待流体稳定和压力稳定会增加操作时间。可能需要多名操作员。 TM 需要操作员计算输入到输出的扭矩。操作员还需要管理、校准和操作两个工具。根据应用情况,可能需要第二个人来抵消扭矩。需要很大的体力。 DTM 在很短的时间内完成紧固和分离任务。只需要 1 名用户,体力消耗大大减少。因为扭矩是根据输出力以数字方式测量的,所以只要达到所需的扭矩,就可以完成。
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
ij ij ij XYKC = , , , , { } 轴承刚度[N/m]和等效粘性阻尼系数[Ns/m] L 轴承轴向长度[m] M , M est 测量和估计的MMFB质量[kg] M m 金属网环质量[kg] P 功率损耗[W] R 旋转轴的半径[m] R i 金属网环内半径[m] R o 金属网环外半径[m] T tf 顶部箔厚度[m] U d , U v , U f 位移[mm]、电压[V]和力[lb]的不确定性 W 轴承上的总静载荷[N] WS 施加的静载荷[N] WD 轴承组件的自重[N] ρ MM 线密度=金属网质量/(金属网体积×金属密度) υ 泊松比 ω 激励频率[Hz]
Wirebondinghasbeenthemostwidelyusedandflexibleform of interconnecting technology in semiconductor manufacturing [1] .Themechanicalreliabilityofwirebondsinamicroelectronic package depends to a big extent on the formation of intermetallic compounds at the interface, environmental stress cycling of the module, fatigue and bonding process itself.债券过程控制和债券质量监控一直是制造OEM的主要关注点。电线键合是一个复杂的过程,具有许多参数(例如功率输入,粘结压力,粘结时间,阶段温度,传感器配置)。对于这样的制造过程,确定主要因素及其影响对于过程优化很重要。常规传感器组件包括以一端耦合的PZT(铅 - 循环酸 - 二烷基)驱动元件,以及键合工具耦合到传感器的输出端。为了维修/更换需求,该工具在组件上螺钉固定。这是具有“蟹腿”键合工具的三维结构。螺钉固定条件(工具上的扭矩值)可能会影响包装实践中的传感器性能,但是很少有有关此