动物是如何体验大脑操控的?光遗传学使我们能够选择性地操控和探究健康和疾病状态下大脑功能的神经回路。然而,对于小鼠是否能够检测和学习来自广泛大脑区域的任意光遗传学扰动以指导行为,我们知之甚少。为了解决这个问题,小鼠被训练报告光遗传学大脑扰动以获得奖励和避免惩罚。在这里,我们发现小鼠可以感知光遗传学操控,无论扰动的大脑区域、奖励效应或谷氨酸能、GABA 能和多巴胺能细胞类型的刺激如何。我们将这种现象命名为视感受,即一种由扰动大脑内部产生的可感知信号,就像内感受一样。利用视感受,小鼠可以学会根据激光频率执行两组不同的指令。重要的是,视感受可以通过激活或沉默单个细胞类型来发生。此外,刺激一只老鼠的两个脑区发现,一个脑区引起的视感知不一定会转移到另一个之前没有受到刺激的区域,这表明每个部位都会产生不同的感觉。学习后,它们可以模糊地使用来自两个脑区的随机交错扰动来指导行为。总的来说,我们的研究结果表明,老鼠的大脑可以“监控”自身活动的扰动,尽管是间接的,可能是通过内感受或作为一种辨别性刺激,这为向大脑引入信息和控制脑机接口开辟了一条新途径。
摘要 — 目的:通过对手腕扰动的皮质反应 (EEG) 进行非线性建模,可以量化健康和神经受损个体的皮质感觉运动功能。反映健康个体共有关键特征的共同模型结构可为未来研究与感觉运动障碍相关的异常皮质反应的临床研究提供参考。因此,我们的研究目标是识别这种共同的模型结构,从而使用具有外生输入的非线性自回归 - 移动平均模型 (NARMAX) 构建皮质反应的非线性动态模型。方法:在接受连续手腕扰动时记录十名参与者的 EEG。开发了一种共同的模型结构检测方法,用于识别所有参与者的共同 NARMAX 模型结构,具有个性化的参数值。将结果与传统的特定于主题的模型进行了比较。结果:所提出的方法在实施一步预测时实现了 93.91% 的方差解释率 (VAF),在实施 k 步预测 (k = 3) 时实现了约 50% 的 VAF,与特定于受试者的模型相比,VAF 没有显着下降。估计的共同结构表明,测量的皮质反应是外部输入的非线性转换和局部神经元相互作用或皮质固有神经元动力学的混合结果。结论:所提出的方法很好地确定了受试者对腕部扰动的皮质反应的共同特征。意义:它为人类感觉运动神经系统对体感输入的反应提供了新的见解,并为未来使用我们的建模方法评估感觉运动障碍的转化研究铺平了道路。
[2]`A. Haro等。不变流形的参数化方法:从严格的结果到e显计算。卷。195。应用数学科学。Springer International Publishing,2016年。ISBN:9783319296623。
当前的最新对象识别模型主要基于会议神经网络(CNN)架构,这些架构是受灵长类动物视觉系统的启发。然而,这些CNN可以被严重的小型,明确的精心制作的扰动而愚弄,并难以识别被人类易于认可的损坏的图像中的物体。在这里,通过与灵长类神经数据进行比较,我们首先观察到具有神经隐藏层的CNN模型更好地匹配灵长类动物的一级视觉皮层(V1),也对广告症的攻击也更为强大。受到这一观察的启发,我们开发了Vonenets,这是一种新的混合CNN视觉模型。每个vonenet都包含一个固定的权重神经网络前端,该vonnet模拟灵长类动物V1,称为VoneBlock,然后是由当前CNN视觉模型改编的神经网络后端。voneBlock基于V1的经典神经科学模型:线性 - 非线性 - 偏见模型,由生物学上约束的Gabor滤波器库组成,简单且可构成细胞的非线性和V1 Neuronal neuronal neuronal stochasticity生成器。训练后,Vonenets保留了较高的ImageNet性能,但每种表现都更高,在由白色盒子对抗性攻击和常见的图像腐败组成的扰动的基准上,分别超过了CNN和最先进的方法,分别超过了18%和3%的基本方法。最后,我们证明了VoneBlock在协同作用中的所有组成部分都可以提高鲁棒性。虽然当前的CNN体系结构可以说是受到脑部启发的,但此处介绍的结果表明,更精确地模仿灵长类动物视觉系统的一个阶段会导致Imagenet级计算机视觉应用中的新增长。