摘要 芫荽 ( Coriandrum sativum L.) 是一种重要的草本植物,广泛用于全球烹饪、药用和芳香应用。芫荽改良的关键进展包括提高产量、抗逆性和植物化学物质的产生。生物技术方法在应对抗病性、环境压力和质量改进等挑战方面的潜力已被充分了解。CRISPR/Cas9 等基因改造技术已实现精确的基因编辑,以实现抗病性、除草剂耐受性和改善营养吸收等特性。此外,生物技术工具可实现精确的基因编辑,允许在不引入外来基因的情况下进行有针对性的修改。这种方法确保了转基因芫荽品种的安全性和法规遵从性,解决了与消费者接受度和环境影响相关的问题。此外,组织培养协议的进步促进了优良芫荽品种的快速繁殖,规避了与种子发芽和保持遗传纯度相关的问题。采用标记辅助选择 (MAS) 和基因组选择的分子育种策略加速了具有理想农艺性状的高产芫荽品种的开发。包括基因组学、转录组学和代谢组学在内的“组学”方法在阐明芫荽重要性状的遗传基础方面提供了宝贵的见解,了解了芫荽发育、应激反应和次生代谢物生物合成的分子机制。本综述概述了芫荽研究的最新生物技术进展,重点关注基因工程、组织培养、代谢组学和分子育种等领域,旨在提高芫荽的产量、质量和抗逆性。关键词:芫荽、生物技术、基因工程、
ICASSCT 2024 会议的主要目标是推动传感器、信号处理和通信领域各方面的创新。会议遵循广泛的盲审流程,选出最佳论文进行演讲,其中包括专门为推进技术、系统和基础设施而设计的技术论文、教程、研讨会和行业会议。会议旨在从通信和信息理论到使用信号处理技术实现、评估和改进实际通信系统的性能。
方法论:第一部分将概述主要的技术进步及其对社会的影响。第二部分将研究技术如何影响社会交往,包括人们是否因技术的普及而变得更加孤立以及技术对社会交往的潜在好处。第三部分将重点关注技术对教育的影响,包括技术在教育中的好处和潜在的弊端。第四部分将探讨技术对经济的影响,包括技术进步带来的潜在好处和风险。最后,第五部分将研究技术对环境的影响,包括技术对环境的潜在好处和风险。
Crossroads 2025 Technology Advances & the Impact on SCM MIT Campus, Media Lab March 18, 2025 8:00 Program check-in, Continental Breakfast 8:30 Welcome and Introduction Prof. Yossi Sheffi – Director, MIT Center for Transportation and Logistics (CTL) Jim Rice – Deputy Director, MIT CTL 9:00 Prof. Daniela Rus – Director, MIT Computer Science and Artificial Intelligence Laboratory ( CSAIL) 10:00休息10:15约翰·哈特教授 - 机械工程系负责人;联合导演,新制造计划11:15休息11:30 Pulkit Agrawal教授 - MIT CSAIL,EECS,EECS 12:30午餐1:30 Michael Schrage博士 - MIT数字经济倡议(IDE)2:30 Break 2:45 Matthias Winkenbach - 研究主管,麻省理工学院CTL•迈克尔·德威特(Michael Dewitt) - 沃尔玛副总裁•米歇尔·艾格斯(Michelle Eggers) - 宝洁副总裁•丹·加考
将举办25个现场会议,向所有MWC访问者开放,并由100多名高级管理人员和专家提供演讲,演讲和演示。马德里,2025年2月24日。Telefónica将于2025年3月3日至6日在巴塞罗那举行的移动世界大会(MWC),其技术解决方案最具破坏性的技术解决方案,使其能够领导变革并激发进步。在今年的活动中,由于量子计算,物联网,人工智能(AI)在不同领域的应用,开放网关API所提供的可能性以及其5G网络高连接的无数功能,该公司将展示创新和鼓舞人心的用例。telefónica正在以“领先的变革鼓舞人心的进步”的口号向MWC展示自己,它传达了公司的创新精神,以寻求最先进的技术,以领导当前的数字时代,使人们进入中心,并为社会和企业服务。将在不同用例和将在Agora中进行的完整课程中显示的不同用例中强调这种愿景。
广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
摘要:作为主要能源消费者之一,烹饪是日常生活中必不可少的一部分。不可再生的烹饪燃料来源,例如木头或牛粪造成危险污染和全球生态系统差。在过去的几十年中,太阳能烹饪经历了许多改进。太阳能烹饪主要被用作减少石油和天然气依赖性,增加环境可持续性并减少全球变暖威胁的替代品。本文讨论了盒子型太阳能炊具的最新发展。本文讨论了影响与太阳能烹饪系统相关的性能,能量和exergy的各种参数的原理和分类。In line with the sustainable development goals of the UN agenda 2030 and especially the heed to the accomplishment of SDG 7 and SDG 13, various economic factors, such as the payback period (PP), net present value (NPV), benefit–cost (B–C) ratios, internal rate of return (IRR), levelized cost of heat (LCOH), and levelized cost of cooking a meal (LCCM) have been discussed.还提出了环境分析,以显示太阳能烹饪的总体好处。评论还重点介绍了盒子型太阳能炊具,其组件及其传热特性的当前开发。已经讨论了各种几何修饰,使用反射器的使用以及改善烹饪的透明绝缘材料。可以说,有了更好的政策影响,可以实现太阳能炊具的社会和经济可接受性。已经获得了最新研究的太阳能炊具的改进,以相变材料(潜热存储)的形式存储的概念,这也有效,这也有助于晚期烹饪。
该项目的共同负责人、澳大利亚研究理事会合成生物学卓越中心主任、杰出教授伊恩·保尔森 (Ian Paulsen) 表示:“通过成功构建和调试最终的合成染色体,我们帮助完成了一个强大的工程生物学平台,这可能会彻底改变我们生产药品、可持续材料和其他重要资源的方式。”
要有效地参与当今的技术领域,公司必须进行大量投资,以培养不仅具有出色才华和训练有素的劳动力,而且还受到了纪律训练,并致力于多年的研究和发展。拥有数十年的业务管理和网络经验,我们通过50:50的联合合作伙伴成功建立了新的企业。值得注意的例子包括与澳大利亚和美国合作伙伴合作的WSA Venture以及与中国投资者成立的WXP Autohaus(见图8)。
1。Seger C,Cannesson MJF。麻醉技术的最新进展。2020; 9。2。月亮JS,Cannesson MJA,镇痛。麻醉和镇痛中的技术一个世纪。2022; 135(2s):S48-S61。3。Vaghela M,Kay R,Jones L,Greig Pja。吸入麻醉剂:代理输送和捕获的评估。2023; 78(6):784-5。4。Bidkar PU,Dey A,Chatterjee P,Ramadurai R,Joy Jjjjoacp。目标控制的输液 - 当前和未来。2024; 40(3):371-80。5。Karunarathna I,Hapuarachchi T,Gunasena P,Aluthge P,Perera N,Gunathilake S等。挥发性麻醉的输送系统中的创新。6。Sessler Dija。温度监测和围手术期温度调节。2008; 109(2):318。7。Roche D,Mahon PJAC。 麻醉监测的深度。 2021; 39(3):477-92。Roche D,Mahon PJAC。麻醉监测的深度。2021; 39(3):477-92。