5实施9 5.1量子熵的生成和分布。。。。。。。。。。。。。。。。。。。。。9 5.1.1 OpenSSL框架。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 5.1.2熵源设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 5.2产后证书的生成。。。。。。。。。。。。。。。。。。。。。。。。。。12 5.3使用量子安全加密图15 5.4使用后量子键的交易签名。。。。。。。。。。。。。。。。。17 5.5 Quantum签名的链链验证。。。。。。。。。。。。。。。。。。。。19 5.5.1固体验证代码。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 5.5.2基于EVM虚拟机的签名验证支持。。。。。。。。。。。。20 5.5.3 EVM基于预编译的签名验证支持。。。。。。。。。。。。。。。。。。。22 5.5.4在不同溶液之间进行比较,以验证后量子后的定性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23
https://doi.org/10.15159/ar.21.131关于在建筑材料中使用天然纤维的文献计量分析G.M.G.Ferreira 1,D。Cecchin 1,*,A.R.G.de azevedo 2,i.c.r.p.Valadão1,K.A。Costa 3,T.R。Silva 4,F。Ferreira 5,P.I.S。Amaral 6,C.M。huther 1,F.A。Sousa 7,J.O。Castro 8,P.F.P。Ferraz 8和M.A.Teixeira 1 1联邦Fluminense University(UFF),农业工程与环境系,Street Passo daPátria,n。 156,BOA VIAGEM,NITERói-RJ,巴西2北Fluminense州立大学(UENF),土木工程系,Goytacazes Campos,RJ,巴西,3联邦Fluminense University(UFF),生产工程系,工人大道,n。 420,Vila Santa Cecilia,Volta Redonda-RJ,巴西4 North Fluminense State University(UENF),高级材料实验室(LAMAV),AV。alberto lamego,2000,28013-602 Campos dos goytacazes-rj,巴西·弗林宁斯大学(UFF),冶金工程系(VMT) 130-000 Alfenas-MG,巴西7 Semag/Aracruz,AV。Morobá,n。 20,BR 29192-733 BairroMorobá-es,巴西8联邦拉夫拉斯大学(UFLA),大学校园,邮政SCODE 3037 LAVRAS,MG,BRABASIL *通信:Daianececchin@id.uff.uff.uff.uff.br.br.br receaved:Feburoy 2 ND,2021年,2021年;接受:2021年8月3日;出版:2021年8月30日摘要。由于人口对可持续性主题的兴趣越来越大,因此与民用建筑领域的主题相关的出版物有所增长。农业废物已成为一个环境问题,由于自然纤维的特性和改善其产品机械性能的可能性,因此自然纤维在废物的再利用中找到了空间。为了达到可持续的建筑需求,以及重复使用废物的需求,研究开始分析天然纤维在建筑材料中的应用。通过搜索术语“天然纤维”和“建筑材料”术语限制在主要WOS集合中的“天然纤维”和“建筑材料”术语时,通过搜索“天然纤维”和“建筑材料”术语进行的研究提供了。 使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。 分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。 对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的中出现最高的单词。。使用Vosviewer(VOS)软件中的BiblioMetrics分析了与出版物,文件的原产国,文件的原产国,作者使用的关键字以及每个文档的引用数量。分析的结果表明,多年来与该主题相关的文件的增加,该地区研究最多的国家分别是中国(16),美国(14)和巴西(11)。对关键词进行分析后提出的结果表明,自然纤维(61个出现),机械性能(44个出现)和复合材料(31例出现)是分析的
ganciclovir抗性突变体759R1)100源自人类巨细胞病毒菌株AD169含有两个抗性突变,其中一个是UL97基因,导致受感染细胞中ganciclovir磷酸化的降低[V. V. V.。 Sullivan,C。L. Talarico,S。C. Stanat,M。Davis,D。M. Coen和K. K. Biron,Nature(伦敦)358:162-164,1992]。在本研究中,我们将第二个突变映射到包含DNA聚合酶基因的4.1-kb DNA片段,并表明它赋予了Ganciclovir抗性而不会损害磷酸化。对4.1-kb区域的序列分析显示,在DNA聚合酶的保守区域V中,在987的位置导致了单个核苷酸变化。重组病毒构建为含有DNA聚合酶突变,但不显示与原始突变体759RD100(22倍)相对于Ganciclovir的中间电阻(4至6倍);重组病毒还表现出对ganciclovir循环磷酸盐(7倍),1-(二羟基-2-二羟基甲基) - 环胞嘧啶(12倍)和磷酸二甲基烷基衍生物(S)-1-(S)-1-(3-羟基-2-磷酸磷酸盐)的抗性。 (S)-1-(3-羟基-2-磷酸甲氧基)胞嘧啶(8至10倍)。但是,重组病毒仍然容易受到某些相关化合物的影响。这些结果表明,人类巨细胞病毒DNA聚合酶是Ganciclovir的抗病毒活性的选择性靶标,Ganciclovir是其某些衍生物和磷酸氧基烷基衍生物的选择。支持区域V在底物识别中的作用;并提出由于聚合酶突变而导致人类巨细胞病毒对这些化合物的临床抗性的可能性。
摘要 — 单独增强单个深度学习模型的鲁棒性只能提供有限的安全保障,尤其是在面对对抗性示例时。在本文中,我们提出了 DeSVig,这是一个去中心化的 Swift Vigilance 框架,用于识别工业人工智能系统 (IAIS) 中的对抗性攻击,使 IAIS 能够在几秒钟内纠正错误。DeSVig 高度去中心化,提高了识别异常输入的有效性。我们尝试使用特殊指定的移动边缘计算和生成对抗网络 (GAN) 来克服由行业动态引起的超低延迟挑战。我们工作最重要的优势是它可以显着降低被对抗性示例欺骗的失败风险,这对于安全优先和延迟敏感的环境至关重要。在我们的实验中,工业电子元件的对抗样本由几种经典的攻击模型生成。实验结果表明,DeSVig 比一些最先进的防御方法更强大、更高效、更具可扩展性。
viticola,但在与Vinifera V. Vinifera中的病原体进行亲密的身体相互作用后被抑制。相比之下,V。139
越来越多的实验证据表明,抗癌和抗菌药物本身可能通过提高可突变性来促进耐药性的获取。成功控制不断发展的人群要求将这种控制的生物学成本识别,量化并包括在进化知情的治疗方案中。在这里,我们确定,表征和利用降低目标人口大小和产生治疗引起的救援突变的盈余之间的权衡。我们表明,在中间剂量下,治愈的可能性最大,低于药物浓度产生最大种群衰减,这表明在某些情况下,通过较少积极的治疗策略可以大大改善治疗结果。我们还提供了一般性的分析关系,该关系将生长速率,药效学和依赖性突变率与最佳控制定律联系起来。我们的结果强调了基本生态进化成本的重要但经常被忽略的作用。这些成本通常会导致情况,即使治疗的目的是消除而不是遏制,累积药物剂量也可能是可取的。综上所述,我们的结果加剧了对管理侵略性,高剂量疗法的标准做法的持续批评,并激发了对诱变性和其他隐性疗法的其他隐性抵押成本的进一步实验和临床投资。
图3。(a)MCF7_ESR1 WT,MCF7_ESR1 Y537S和MCF7_ESR1 D538G细胞用9浓度的palbociclib±雌激素剥夺(E2-)或1 nm fulvesterant处理。治疗6天后,通过曲面测定法测量细胞活力。(b)MCF7_ESR1 WT的肿瘤生长(n = 12),MCF7_ESR1 Y537S(n = 8)或MCF7_ESR1 D538G(N = 8)异种移植物在卵巢肌切除术中。小鼠用车辆或50mg/kg Palbociclib P.O.持续4周。(c)在(b)中描述的肿瘤处理结束时肿瘤体积的折叠变化的比较。(d)(b)中肿瘤的IHC染色定量。数据代表平均值±SD;使用Dunnett的事后测试使用单向方差分析进行统计分析。
在气候变化、害虫和病原体蔓延、世界人口不断增长的粮食需求以及农药使用对环境造成巨大影响的背景下,Flors 等人 ( 1 ) 在《科学前沿》上发表的头条文章提出了一种替代的创新理念,即以环保高效的方式利用植物的内在恢复能力来应对这些挑战。这篇及时的文章强调了诱导抗性 (IR) 现象,这是植物对病原体和/或食草动物攻击的免疫反应的一部分。目前,研究人员的主要目标是减少甚至取代合成化学农药的使用,以可持续、生态和经济可行的方式保护生物多样性,并最大限度地减少对土壤和地下水的有害影响。Flors 等人 ( 1 ) 提出,内源性的植物防御机制通常比使用农药等更环保、更高效、更有针对性,从而为未来减少对农药的依赖提供了动力。我们支持作者的想法,并提供我们的观点和一些批判性考虑,希望这将有助于推动这一进程。
在这项研究中,我们评估了自主驾驶(AD)系统中增强学习的鲁棒性(RL),特别是反对对抗攻击的稳健性。我们采用了Karavolos等人提出的基于Q学习的AD模型。[1]的简单性,是我们分析的基础。此选择使我们能够在简单的Q学习方法和更复杂的RL系统之间进行明显的比较。我们设计了两个威胁模型,以模拟对基于RL的广告系统的对抗性攻击。第一个模型涉及在RL模型的细调中注入未发现的恶意代码,使其容易受到对抗性扰动的影响,这可能会导致在特定的触发条件下碰撞。第二个威胁模型旨在通过直接改变RL模型在特定触发条件下的行动决策来引起碰撞,这代表了一种更隐秘的方法。基于这些威胁模型,我们对两种主要情况的实证研究提出:操纵传感器输入和直接对动作的扰动。研究结果表明,尽管基于RL的AD系统表现出针对传感器输入操纵的弹性,但在受到直接动作扰动时它们会表现出脆弱性。主要的和宽容的场景涉及更改传感器读数,例如在偏心转弯期间,这可能会误导系统并可能导致事故。这对于小误差很大的操作至关重要。第二种情况直接扰动动作,更多地是对基于RL的AD系统脆弱性的理论研究,而不是实用的现实世界威胁。
