TBR225 是越南北部最受欢迎的商业水稻品种之一。然而,该品种极易感染细菌性叶枯病 (BLB),这是一种由水稻白叶枯病 (Xoo) 引起的疾病,会导致严重的产量损失。OsSWEET14 属于编码糖转运蛋白的 SWEET 基因家族。与其他 Clade III 成员一起,它表现为易感性 (S) 基因,该基因由亚洲 Xoo 转录激活因子样效应物 (TALE) 诱导对于疾病是绝对必要的。在本研究中,我们试图在 TBR225 优良品种中引入 BLB 抗性。首先,两种越南 Xoo 菌株被证明在 TBR225 感染后会上调 OsSWEET14。为了研究这种诱导是否与疾病易感性有关,利用 CRISPR/Cas9 编辑系统获得了九个 TBR225 突变体系,这些突变发生在 OsS-WEET14 启动子的 AvrXa7、PthXo3 或 TalF TALEs DNA 靶序列中。T 0 和 T 1 个体的基因分型分析表明,突变是稳定遗传的。三个无转基因 T2 编辑系的所检查农艺性状与野生型 TBR225 的性状均无显著差异。重要的是,其中一个 T 2 系含有最大的纯合 6 bp 缺失,显示 OsSWEET14 表达降低,对越南 Xoo 菌株的易感性显著降低,对另一个菌株完全抗性。我们的研究结果表明,CRISPR/Cas9 编辑赋予了越南商业精英水稻品种更高的 BLB 抗性。
不可察觉的对抗性攻击旨在通过添加与输入数据的不可察觉的概念来欺骗DNN。以前的方法通常通过将共同的攻击范式与专门设计的基于感知的损失或生成模型的功能相结合,从而提高了攻击的易用性。在本文中,我们提出了扩散(Advad)中的对抗攻击,这是一种与现有攻击范式不同的新型建模框架。通过理论上探索基本的建模方法,而不是使用需要神经网络的reg-ular扩散模型的转化或发电能力,从而将攻击作为非参数扩散过程概念化。在每个步骤中,仅使用攻击模型而没有任何其他网络来制定许多微妙而有效的对抗指导,从而逐渐将扩散过程的结束从原始图像终结到了所需的不可感知的对抗性示例。以拟议的非参数扩散过程的扎实理论基础为基础,达到了高攻击功效,并且在本质上降低了整体扰动强度,并实现了高发作的效果。此外,还提出了增强版本的Advad-X,以评估我们在理想情况下的新型框架的极端。广泛的实验证明了拟议的Advad和Advad-X的有效性。与最新的不可察觉的攻击相比,Advad平均达到99.9%(+17.3%)的ASR,为1.34(-0.97)L 2距离,49.74(+4.76)PSNR和0.9971(+4.76)和0.9971(+0.0043)(+0.0043)ssim,抗四个DIFERTIBER架构的DNN均具有三个流行的DNN。代码可在https://github.com/xianguikang/advad上找到。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月17日发布。 https://doi.org/10.1101/2025.01.14.632956 doi:Biorxiv Preprint
肌肉力量和大小与单方面渐进式抵抗训练唐纳德·D·D·D·迪沃特(D. D. D. D. D. D. Deiwert 1,Sisi MA 2,Christopher Carey 1,Davin Greenwell 1,Heather Gordish-Dressman 3,Paul D. Thompson 4,Thomas Price 5,Thomas Price 5,Theodore J.Theodore J. Angelopoulos 6,Angelopoulos 6,Priscilla M.Clarkarkson * Paul S. Visich 10,Robert F. Zoeller 11,Eric P. Hoffman 12和Monica J. Hubal 1 1 Indiana University,印第安纳大学印第安纳波利斯的运动机能学系; 2明尼阿波利斯明尼苏达州明尼苏达大学的健康信息学研究所; 3华盛顿特区乔治华盛顿大学基因组学和精密医学系; 4 Hartford CT康涅狄格州哈特福德医院心脏病学系; 5卫生科学学院,布里奇波特大学,布里奇波特康涅狄格大学; 6伯灵顿VT佛蒙特大学康复与运动科学系; 7卫生部,人类绩效和娱乐系,韦科德克萨斯州贝勒大学; 8爱尔兰都柏林怀特霍尔市都柏林市大学临床演习生理学系; 9康涅狄格大学Storrs CT的运动机能学系; 10新英格兰大学的运动与运动表演系,Biddeford ME; 11佛罗里达州大西洋大学运动科学与健康促进系,Bocca Raton FL;纽约宾厄姆顿大学制药科学系12; *通过培训对应作者,肌肉的大小/力量变化:Monica J Hubal,博士,FACSM副教授 - 运动学印第安纳大学印第安纳波利斯901 West New York ST; PE266印第安纳波利斯,46202电子邮件:mhubal@iu.edu电话:317-278-2343
大型语言模型(LLMS)传统上依赖手动及时工程,这可能是耗时且容易受到人类偏见的影响。在本文中,我们提出了一个基于进化增强学习原理(EVORL)的对抗性进化增强学习(AERL)框架[Lin等,2023],以实现对AI剂的持续自我投资。我们的方法迭代生成,测试和完善了通过四个组件的提示或配置:(1)进化提示作者/改进器/改善者,(2)进化模型,(3)对抗模型和(4)法官。通过将候选模型暴露于对抗性的场景中,并通过进化运算符选择最佳变体,AERL促进了强大的,域特异性的解决方案,而无需重新进行过多的人类试验和错误。受到Evorl [Bai等,2023]中多目标优化技术的启发和对抗性训练方法[Goodfellow等人,2014],我们的经验性和有意义的示例来自分散财务(DEFI)(DEFI),代码生成,并且数学推理说明了我们框架的多功能性。结果表明,对抗性的进化策略可以在维持高适应性和性能的同时,诱导地减少人驱动的猜测。
简介:缓步动物是一种微生物极端微生物,以其对恶劣环境的超强适应力而闻名,已成为天体生物学研究和探索地球以外生命潜力的关键模型。这些生物表现出非凡的适应性,能够在极端条件下生存,例如从 -271°C 到 150°C 以上的温度、超过大气压 1,200 倍的压力、干燥和强电离辐射。它们独特的生物学特性对支撑这种适应力的分子和细胞机制提出了根本问题。这种适应性的核心是特定的蛋白质,例如 Dsup(损伤抑制剂),它通过在遗传物质周围形成保护盾来减轻辐射引起的 DNA 损伤,减少双链断裂并保持基因组完整性。
摘要。自我主张身份(SSI)系统使用户在访问数字和真实世界资源时(很大程度上)建立并验证其身份,以作为以用户为中心的身份管理的有希望的隐私保护SO。Maram等人的最新工作。提出了保护隐私的SYBIL分散的SSI Sys-Tem candid(IEEE S&P 2021)。虽然这是一个重要的步骤,但显着的缺点破坏了其功效。其中最重要的两个是以下内容:首先在一个恶意发行人的情况下,无法实现的无链性破坏。第二,它引入了交互性,因为用户必须每次与发行人进行通信,以收集旨在用于与应用程序交互的情况。这是SSI的目标,其目的是使用户完全控制其身份。本文首先介绍了基于公开可验证的属性阈值匿名计数令牌(TACT)的概念。与局限于集中设置的最新方法(Benhamouda等,Asiacrypt 2023)不同,TACT在分布式信任环境中运行。伴随着正式的安全模型和可证明的安全插入,Tact引入了代币发行的新颖维度,我们认为这具有独立的利益。接下来,该纸张利用拟议的TACS方案来构建有效的SYBIL SSI系统。该系统支持各种功能,包括阈值发行,不可链接的多个人选择性披露以及提供恒定尺寸凭证的非交互性,不可转移的凭证。规定的结构得到了严格的安全定义和证明的支持。最后,我们的基准结果表明,与坦率的所有发行人相比,我们的建筑物的效率提高了效率,并降低了可以与所有发行人并行运行的一轮亲公司。
抗菌耐药性(AMR)是对人,动物和环境健康的主要全球威胁,它正在不断发展。应归咎于多药(MDR)细菌的发展,传播和持久性,也称为“超级细菌”。抗菌剂的有效性受到耐受性或抵抗力从首次使用的潜力而损害。用于治疗细菌,真菌,病毒和寄生虫感染的抗菌剂属于此类。随着这种耐药的增长,几种生理和生化过程可能会发挥作用。在人类历史上的关键时刻发现了抗生素,彻底改变了医学并挽救了无数的生命。可悲的是,这种“魔术子弹”之后是对它们产生抗药性的病原体。尽管在过去几十年中采取了几项建议和措施,但环境并没有跟上微生物越来越对可用药物的免疫力,这种现象称为抗菌耐药性(AMR)。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。 在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。 要解决此问题,应使用多方面的策略。 医学生,医生和药剂师必须接受持续和更新的培训。 除非迅速解决AMR,否则可能会丢失。鉴于AMR危机的幅度以及受其影响影响的众多社会领域,该问题的解决方案必须是全面和系统的。在这一点上,不可能确定预测未来的情况,但是由于新型抗生素的稀缺性,AMR的调节似乎非常困难。要解决此问题,应使用多方面的策略。医学生,医生和药剂师必须接受持续和更新的培训。可能会丢失。必须将研究的一个组成部分纳入AMR政策,以及制药行业的鼓励生产“超级细菌抗生素”。
背景:识别预测免疫疗法功效的生物标志物并发现联合疗法的新靶标是改善膀胱癌(BLCA)患者预后的关键要素。方法:首先,我们使用来自多个公共数据库的数据探索了正常和Pan-Cancer组织中TBX3的表达模式以及TBX3与免疫微环境之间的相关性。然后,我们组合了各种技术,包括大量RNA测序,单细胞RNA测序,高通量细胞因子阵列,功能实验,Procartaplex多重免疫测定和组织全景组织量化测定,以证明TBX3将Immunosupsporcement tamorsument(bla)塑造为bla s inrosement(bla)。结果:我们将TBX3确定为与BLCA中的免疫抑制微环境相关的关键因素。我们发现TBX3主要在恶性细胞中表达,其中TBX3高肿瘤细胞增加了TGFβ1的分泌,从而促进了与癌症相关的成纤维细胞(CAF)浸润,从而形成了一种免疫抗抑制性的微节流。我们进一步证明,TBX3通过与TGFβ1启动子结合来增强TGFβ1的表达,并阻止TGFβ1抵消TBX3的免疫抑制作用。此外,TBX3通过降低GZMB + CD8 + T细胞的比例来降低CD8 + T细胞的杀菌效率,并敲击TBX3与抗PD-1处理相结合的TBX3增加了CD8 + T细胞的浸润增加了VIVO中的CD8 + T细胞浸润和降低CAF。最后,我们发现TBX3预测了现实世界中免疫疗法队列和多个公共队列中的免疫疗法功效。我们还验证了TBX3 +恶性细胞与CD8 + T细胞之间的反比关系以及组织微阵列中与CAF的正相关关系。结论:总而言之,TBX3通过诱导免疫抑制微环境促进BLCA的进展和免疫疗法抗性,而靶向TBX3可以增强BLCA免疫疗法的功效。
诱导的耐药性(IR)使植物能够通过促进自身的免疫力来提高害虫和微生物病原体的韧性,并因其在作物保护方案中的价值而被认可。尽管有前途的应用,但与农药和单一抗性基因相比,使用IR在作物保护中的使用仍然很小。本综述旨在通过研究过去几十年来的内部(免疫)和外部(生态)IR策略来阐明这种差异。还讨论了IR的多方面优势,尤其是其提供广谱保护并增强某些农作物的营养和营养价值的能力。然后揭示了阻碍广泛采用IR策略的各种障碍。在考虑了最近的科学发现和见解后,提出了潜在的解决方案,包括利用表观遗传学方法来了解IR所涉及的机制。承认,作物保护的未来可持续性与一次性技术无法调和,这篇综述提出了利用有关植物免疫系统适应性及其生态相互作用的最新见解,以将IR安全地整合到现有的作物保护方案中。通过强调对基础研究和翻译研究的全面和整体方法的需求,本综述为利用IR与其他策略一起促进富有弹性,环保且经济上可行的未来的舞台奠定了基础,从而确保了农作物的健康。