本研究重点系统研究 Ti 6Al 2Sn 4Zr 2Mo Si 钛合金,并表征 ¡ + ¢ (等轴和双峰) 和 ¡ + ¡ A (双相) 微观结构。它对双相 ( ¡ + ¡ A ) 微观结构的突出优势提供了更多见解,尤其是其出色的加工硬化和强度-延展性平衡。讨论了形成等轴、双峰和双相微观结构所需的热处理条件及其对晶粒尺寸和相比例的影响。它展示了如何通过热处理温度、保温时间和可能的时效过程来控制微观结构参数。研究了这些微观结构因素对每种合金拉伸性能的影响,特别是对强度 (屈服应力、极限拉伸强度)、延展性 (塑性伸长率) 和加工硬化性能的影响。将双相 ( ¡ + ¡ A ) 微观结构与等轴和双峰微观结构进行比较,并展示其优势,突出双相微观结构具有更好的强度-延展性平衡和优异的加工硬化性能。事实上,双相 ( ¡ + ¡ A ) 微观结构的变形微观结构比双峰 ( ¡ + ¢ ) 微观结构表现出更均匀的应变分配。因此,这项工作证明了优化的双相 ( ¡ + ¡ A ) 微观结构在室温下增强拉伸性能的潜力。最后,使用梯度增强回归树的机器学习模型来量化微观结构因素(微观结构类型、晶粒尺寸和相对比率)对机械性能的重要性。[doi:10.2320 / matertrans.MT-MLA2022009]
欠匹配铝焊缝的抗拉强度和延展性的实验量化 1. 目标。a. 本项目将通过实验测试具有欠匹配焊缝的铝制船舶结构连接细节,以更好地了解这些连接的能力,并创建测试数据库以供将来的设计方法验证。2. 背景。a. 铝结构可为许多船舶提供高达 50% 的结构重量节省潜力,从而降低燃料消耗并提高许多时间敏感或吃水受限应用的经济性。b. 设计铝结构的一个关键挑战是处理用于组装结构的欠匹配熔焊。与大多数钢材不同,船用铝合金在焊缝热影响区 (HAZ) 的强度会降低,达到原材料强度的 50%。然而,对焊接铝船舶结构的拉伸强度的研究很少。初步评估得出结论,目前的方法不足以设计复杂的连接。海洋工程和土木工程界已就此问题进行了更广泛的研究,但这些研究并未涉及海洋细节。c. 欠匹配焊缝的主要问题是,在极端拉伸载荷下,塑性变形会集中在欠匹配区域,导致这些区域出现高应变并最终发生延性失效。鉴于其余