新霉素是一种氨基糖苷抗生素,被广泛用于预防疾病的兽医医学。生物降解是从环境中去除新霉素的关键途径。迄今为止,仅记录了Ericae的白rot真菌versicolor和Ericoid Mycorrhizal真菌rongus rhizoscyphus ericae,以有效地降解新霉素。然而,尚无报道称为新霉素能力的细菌物种,突显了与新霉素修复有关的微生物研究的显着差距。在这项研究中,分别通过富集培养和逐渐适应性化,从药物废水和无新霉素的红树林土壤中分离出了cuprividus basilensis和velezensis。这些分离株显示新霉素的降解速率为46.4和37.6%,在96小时内,100 mg·l -1新霉素作为唯一的碳源。cuprividus basilensis的补充硫酸铵的降解率达到50.83%,而velezensis芽孢杆菌的降解速率为58.44%的可溶性淀粉的优质降解效率为58.44%。我们的发现为新霉素的微生物降解提供了宝贵的见解。首次分离出两种新霉素的细菌。在4天内,这两种物种都将新霉素降解为唯一的碳源或在合成代谢条件下。微生物适应新霉素应激,并超过了受污染源的微生物。这挑战了以下假设:抗生素降解的微生物主要起源于污染的环境。这些发现扩大了已知的新霉素降解微生物的多样性,并证明了它们从药物废水中去除难治性新霉素的潜力。
抗生素耐药性的进化是一场世界性的健康危机,其根源是新突变。减缓突变的药物可以作为联合疗法延长抗生素的保质期,但减缓进化的药物和药物靶点尚未得到充分探索,而且效果不佳。在这里,我们使用基于网络的策略来识别阻断氟喹诺酮类抗生素诱发突变中心的药物。我们确定了一种经美国食品药品监督管理局和欧洲药品管理局批准的药物,地喹氯铵 (DEQ),它可以抑制大肠杆菌一般应激反应的激活,从而促进环丙沙星诱导的(应激诱导的)诱变 DNA 断裂修复。我们发现了抑制途径中的步骤:激活上游“严格”饥饿应激反应,并发现 DEQ 会减缓进化,而不会有利于 DEQ 抗性突变体的增殖。此外,我们展示了小鼠感染期间的应激诱导突变以及 DEQ 对其的抑制。我们的工作为减缓细菌和一般进化的药物提供了一种概念验证策略。
中国是世界上最大的水产品生产国和出口国,同时也涉及水产养殖中大量使用抗生素(刘等,2017;李等,2021)。2017年,中国消耗了全球57.9%的抗生素,生产了全球51.2%的水产养殖产量(Schar等,2020)。淡水养殖是中国主要的水产养殖方式,主要在池塘进行,养殖面积和产量一直位居第一。由于对水源的需求量大,淡水养殖场通常分布在湖泊周围或河流沿岸,池塘数量众多(中华人民共和国农业农村部,2023)。例如,位于长江中下游的浙江省,太湖周边有大量鱼塘,占全省淡水鱼产量的 30%(浙江省统计局,2023)。最近,一些研究揭示了太湖周边水产养殖水体中抗生素的分布模式(Song 等,2016、2017),以及耐药基因主要在太湖中的分布模式(Chen 等,2019;Stange 等,2019)。然而,关于耐药基因和抗生素的污染特征,以及它们与不同水产养殖方式和养殖阶段的水质和微生物多样性的相关性的数据有限。
I.自治研究人员的普通医生,毕业于厄瓜多尔天主教大学。 div>II。 div>一般医学,自主研究人员,毕业于厄瓜多尔阿祖大学。 div>iii。 div>一般医学,自治研究人员,毕业于厄瓜多尔昆卡大学。 div>iv。 div>医学内部在厄瓜多尔基多的Calderón的通用教学医院内部。 div>
摘要 简介 微生物对抗菌药物的耐药性不断升级,对公共健康构成了重大威胁。使用生物标志物(最显著的是降钙素原 (PCT) 和 C 反应蛋白 (CRP))指导抗菌治疗的策略有望安全地减少患者的抗生素暴露。虽然 CRP 研究较少,但与 PCT 相比,它具有成本更低、可用性更广等优势。 方法与分析 这项随机临床试验旨在评估一种针对非危重成人患者的新算法。该算法结合了关键的临床变量和 CRP 行为。它将通过移动应用程序作为数字临床决策支持系统应用。主要目标是评估该算法与基于现行指南的标准治疗相比在缩短治疗时间方面的有效性,同时通过监测不良事件的发生来确保患者安全。 伦理与传播 只有在阅读知情同意书后同意参加研究的患者才会被纳入研究。该项目已提交米纳斯吉拉斯联邦大学 (COEP-UFMG) 研究伦理委员会审议并获得批准(批准号:5.905.290)。预计将收集 200 名患者的临床和实验室数据,这些数据来自电子病历和实验室系统,同时存储血清样本以备将来分析。数据将使用研究电子数据采集平台保存,血清样本将存储在 UFMG 的受监管生物库中。访问将通过凭证进行控制,并在科学出版期间进行隐私保护和匿名化共享。试验注册号 此试验已在 ClinicalTrials.gov ( NCT05841875 ) 上注册,最后更新时间为 2024 年 12 月 5 日 12:49。
抗生素耐药性对公共卫生和药物开发构成重大威胁,主要原因是医疗和农业环境中抗生素的过度使用和滥用。随着细菌适应逃避现有药物,控制细菌感染变得越来越具有挑战性,导致疾病长期存在、医疗成本增加和死亡率上升。本综述探讨了抗生素在对抗感染中的关键作用以及使细菌能够抵抗抗生素的机制。讨论的主要抗生素包括香芹酚、达巴万星、喹诺酮类、氟喹诺酮类和佐利氟达星,每种抗生素对细菌病原体都有独特的作用。细菌已经进化出复杂的耐药策略,例如产生酶来中和药物、修改药物靶点以及使用外排泵去除抗生素,从而显著降低药物疗效。此外,本综述还研究了抗生素开发中的挑战,包括由于成本高和监管复杂性导致新药发现率下降。创新方法,例如基于结构的药物设计、联合疗法和新的给药系统,因其有可能创造具有增强对抗耐药菌株作用的化合物而受到关注。本评论为旨在对抗抗生素耐药性和推动开发强大的抗菌疗法以确保未来健康安全的研究人员和开发人员提供了宝贵的见解。
这项研究的重点是从巴格达市的根际土壤中分离出的鲍曼尼杆菌产生和纯化的铁载体,并与所选抗生素进行独立和结合评估其生物活性。使用Chrom琼脂,生化和生理测试进行细菌鉴定,并通过PCR扩增16S rDNA管家基因确认。在培养琥珀酸酯肉汤中的细菌后,使用乙酸乙酯提取铁载体,并通过HPLC纯化,在403 nm的波长下检测到。从下呼吸道感染中获得了总共38种细菌分离株,包括大肠杆菌,肺炎克雷伯氏菌,铜绿假单胞菌,铜绿杆菌,baumanniii,金黄色葡萄球菌,金黄色葡萄球菌和塞拉蒂亚和srratia marcesencens。用13种抗生素进行的抗生素敏感性测试显示,氨苄西林(65.7%)和头孢曲松(63.1%)的抗性率最高,而使用amikacin(15.7%)观察到最低的耐药性。对铁载体的协同活性与头孢曲松,头孢嗪和庆大霉素相结合,以针对多剂量抗性(MDR)分离株进行了测试。通过铁载体和庆大霉素与金黄色葡萄球菌的结合观察到了最显着的抗菌活性,而对鲍曼尼曲霉的效果最小。总之,从下呼吸道感染中成功鉴定出38种细菌分离株。铁酚与庆大霉素的结合表现出对金黄色葡萄球菌的显着抗菌活性,但对鲍曼尼曲霉的作用无效。
摘要:抗生素在感染部位的生物利用度低是治疗失败和细菌耐药性增加的主要原因之一。因此,开发新的、非传统的抗生素输送策略来应对细菌病原体至关重要。在这里,我们研究了两种氟喹诺酮类药物环丙沙星和左氧氟沙星封装到聚合物基纳米载体(纳米抗生素)中,目的是提高它们在细菌感染部位的局部生物利用度。优化配方以实现最大药物负载。纳米抗生素的表面用抗葡萄球菌抗体作为配体分子进行修饰,以靶向金黄色葡萄球菌病原体。通过荧光共聚焦显微镜研究了纳米抗生素与细菌细胞的相互作用。常规测试(MIC 和 MBC)用于检查纳米抗生素制剂的抗菌性能。同时,还采用了生物发光分析模型,揭示了对胶体系统抗菌效力的快速有效评估。与游离型抗生素相比,靶向纳米抗生素对金黄色葡萄球菌的浮游生物和生物膜形式均表现出增强的抗菌活性。此外,我们的数据表明,靶向纳米抗生素治疗的疗效可能受其抗生素释放曲线的影响。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月24日。 https://doi.org/10.1101/2025.01.23.634623 doi:Biorxiv Preprint
城市固体废物 (MSW) 填埋场代表着尚未充分探索的微生物生态系统。填埋场中含有不同数量的抗生素和建筑和拆除 (C&D) 废物,这些废物有可能因杀生物剂或氧化还原活性成分而改变微生物代谢,而这些影响在很大程度上尚未得到充分探索。为了规避 MSW 异质性的挑战,我们对模拟的 MSW 微观世界进行了一项 65 天的时间序列研究,以评估微生物组的变化,使用 16S rRNA 测序来响应 1) Fe(OH) 3 和 2) Na 2 SO 4 来代表 C&D 废物的氧化还原活性成分以及 3) 抗生素。Fe(OH) 3 的添加改变了整体群落组成,增加了 Shannon 多样性和 Chao1 丰富度。添加七种抗生素的混合物(每种 1000 ng/L)会改变群落组成,而不会影响多样性指标。添加硫酸盐对微生物群落组成或多样性影响不大。这些结果表明,新鲜 MSW 中的微生物群落组成可能会受到铁废物涌入和单一抗生素应用的显著影响。
