口腔拥有各种各样的微生物群落,包括细菌,真菌,病毒和原生动物。这些被共同称为口服微生物群。由于次生代谢产物的释放,这些微生物群落结果的平衡变化会导致许多牙齿问题,例如牙齿龋齿和牙周疾病。龋齿是最常见的慢性疾病,由于产生酸性微生物,饮食碳水化合物和宿主特征而发生。此过程始于微生物斑块,因此形成生物膜。它导致无机物质的矿化,从而导致牙齿结构的崩溃[1]。链球菌突变是一种非运动型,革兰氏阳性球菌,可代谢碳水化合物。这是一种辅助厌食症,在此过程中起着至关重要的作用,并且是龋齿的主要贡献者[2]。
耐多药细菌病原体的迅速出现和蔓延要求开发出既高效又不会引起毒性或耐药性的抗菌剂。在此背景下,我们设计并合成了两亲性树枝状大分子作为抗菌候选药物。我们报道了由长疏水烷基链和叔胺封端的聚(酰胺胺)树枝状大分子组成的两亲性树枝状大分子AD1b对一组革兰氏阴性细菌(包括耐多药大肠杆菌和鲍曼不动杆菌)表现出的强效抗菌活性。AD1b 在体内表现出对抗耐药细菌感染的有效活性。机制研究表明,AD1b 靶向膜磷脂磷脂酰甘油 (PG) 和心磷脂 (CL),导致细菌膜和质子动力破坏、代谢紊乱、细胞成分泄漏,并最终导致细胞死亡。总之,特异性地与细菌膜中的 PG/CL 相互作用的 AD1b 支持使用小型两亲性树枝状聚合物作为针对耐药细菌病原体的有希望的策略并解决全球抗生素危机。
1. 微生物学和抗菌素耐药性 a. 定义和范围:抗菌素耐药性 (AMR) 可定义为微生物对抗菌剂或以前具有治疗作用的药物产生耐药性。最常讨论的方面是细菌的抗生素耐药性,但 AMR 包括所有微生物。对抗病毒药物的耐药性也是一个日益严重的问题,尤其是需要终生治疗的病毒感染(如 HIV)。AMR 通常源于治疗最初针对的病原微生物中发生突变、转移或遗传的基因。其他生理微生物状态,如耐受性和持久性,也会导致 AMR 的发展。我们缺乏对这些机制如何导致 AMR 的了解,这使治疗变得复杂。开发新的有效治疗方法、技术和药物需要对生物学、生理学和微生物的防御机制有基本的了解。此外,它还涉及全面了解治疗发展的各个方面。因此,与临床实践、临床研究、临床前研究和公共卫生密切相关的微生物学专业知识对于寻找新的抗菌剂和策略至关重要。与药物化学家和制药技术合作对于开发新的治疗方案是必不可少的。b. 社会意义:抗菌药物耐药性的出现是一个重大的全球社会问题,由于缺乏有效的治疗措施,对现代医学构成了极其严重和现实的威胁。在潜在的后抗生素时代,抗生素不再起作用,即使是轻微的感染也可能再次导致死亡。我们可能会发现自己处于这样一种境地:由于随后感染多重耐药和泛耐药微生物的风险,必须更频繁地避免手术。据估计,2019 年全球约有 127 万人死于细菌性抗菌药物耐药性。在挪威,手术后感染的可能性已经成为一个风险评估因素。因此,抗菌药物耐药性研究被认为对社会非常重要,预计将引起公众和行业利益相关者的极大兴趣。c.融合和世界领先研究环境的潜力:在生命科学大楼 (LVB),药学系的药物微生物学和免疫学与临床医学研究所的微生物学系、生物科学系的感染生物学以及牙科学院口腔生物学研究所的微生物组和抗生素耐药性研究小组一起迁入。LVB 的共置为加强奥斯陆大学 (UiO) 和奥斯陆大学医院 (OUS) 的感染生物学/AMR 环境之间的合作提供了独特的机会。研究和临床诊断的整合还将促进基础研究、转化研究和临床实践的融合,从而为抗菌药物耐药性领域的潜在创新铺平道路。药学系和化学系的药物化学家和制药技术人员的参与为开发新活性物质、新治疗方案提供了合作机会
abiopuretm基因组DNA方案用于从细菌生长中提取DNA。使用定量荧光计设备测量DNA样品的浓度(20 ng/μl)。宏company提供了冻干状态的引物:S。sanguis-f 5`-ggatagtggctcagggcagccagccagt t-3`,S。sanguis-r 5`-gaacagttgctgctgcttgcttgcttgtgtgtc- 3`为获得储备溶液,通过将冻干的引物分散在300μL无核酸酶的水中,可以实现100 pmol/µl的浓度。通过将10μl的储备底漆与90μl无核酸酶的水混合,制备了浓度为10 pmol/μl的溶液。按照制造商的说明,通过将10μL的主混合与1μl的前向引物,奖励底漆,6μl无核酸酶的无核酸酶水和2μL样品DNA混合,从而产生20μL的最终溶液。
随着全球范围内抗生素耐药性的增加,细菌感染的标准治疗方法变得越来越无效。由于抗生素的过度使用,耐多药细菌已成为 21 世纪的严重危害和全球主要医疗保健问题。传统的开发新型抗菌药物的方法不足以满足现有的需求,因此正在开发抗菌发现领域的新策略。决明子 (C.fistula) 是豆科植物的一种,天然具有抗菌特性。这种植物用于治疗皮肤病、肝脏问题、结核腺体、呕血、瘙痒、白斑和糖尿病。因此,除抗生素之外的有效抗菌治疗至关重要。这种植物含有多种次级代谢产物,包括单宁、萜类化合物、生物碱、黄酮类化合物和糖苷,它们都具有抗菌特性。萜烯和萜类化合物可有效对抗细菌、真菌、病毒和原生动物。萜烯的作用方式涉及亲脂性化学物质破坏膜。添加甲基以增加贝壳杉烯二萜的亲水性会显著降低其抗菌效果。在这项研究中,对金黄色葡萄球菌和肺炎克雷伯菌的抗菌筛选试验表明,从 C.fistula 的乙酸乙酯提取物中分离出的一种新化学物质比阳性对照具有更宽的抑制区。用这种新化学物质处理后,处理过的培养物的基因组 DNA 图谱保持不变。这种新化学物质抑制了蛋白质合成,导致两种菌株处理过的培养物中的蛋白质含量降低,证实了其杀菌作用。需要进一步进行免疫印迹分析以确认特定的蛋白质。研究一种可降低药物负荷和耐药性风险以及治疗成本的新型三萜类化合物,可以为治疗与糖尿病相关的继发性尿路感染提供有希望的治疗选择。
Albizia Saman是Fabaceae家族的一棵树,自过去以来就一直用于人类医学。先前的研究报告了可能针对多种疾病的药物价值,这可能归因于其多样化的植物化学组成。因此,需要全面研究其针对单个病原体及其机制的功效。本研究是为了涵盖抗菌素,抗炎和抗氧化潜力的全面描述,并重点介绍了白色念珠菌。已经使用了各种微生物方法来测定萨曼提取物的抗菌电位,包括圆盘扩散,扩散,条纹板和各种稀释技术。各种模型在体外和体内测定了抗炎和抗氧化活性。A。萨曼提取物表现出针对已测试病原体C. bilicans的显着抗菌活性。它也有效的抗炎和抗氧化活性。A. 的植物化学筛选 萨曼叶提取物的植物化学筛选显示了几种重要的植物化学物质:单宁,生物碱,碳水化合物,皂苷,类黄酮,蛋白质,酚酚,苯酚和荷兰蛋白。 鉴于A.萨曼提取物的抗菌,抗炎和抗氧化特性,它在新的治疗剂的发展中具有巨大的潜力。 本研究的发现清楚地表明,可以利用Albizia Saman揭示该植物的传统用途,并发现新的治疗用途。A.萨曼叶提取物的植物化学筛选显示了几种重要的植物化学物质:单宁,生物碱,碳水化合物,皂苷,类黄酮,蛋白质,酚酚,苯酚和荷兰蛋白。鉴于A.萨曼提取物的抗菌,抗炎和抗氧化特性,它在新的治疗剂的发展中具有巨大的潜力。本研究的发现清楚地表明,可以利用Albizia Saman揭示该植物的传统用途,并发现新的治疗用途。
结果:总共包括168位HIV阳性孕妇,其中32.1%(54/168)显示出UTI症状。就怀孕的年龄而言,三个月为34.5%(58/168),在Trime II中为47.6%(80/168),最后是三个月的17.9%(30/168)。约有61.3%(103/168)的参与者是城市居民。从29例(53.7%)临床确认的UTI患者和9.7%(11)非临床确认的患者中分离出细菌。最常见的细菌是大肠杆菌,其占25%(10/40),其中84.4%在革兰氏阴性基组中对四环素具有抗性,而50%(4/8)金黄色葡萄球菌具有抗性,而75%的分离株对革兰氏蛋白易感组敏感。总体而言,22.5%(9/40)细菌分离株对至少一种抗微生物剂具有抗性,而62.5%(25/40)的分离株对≥2种抗微生物剂具有抗性。
ntimicrobial抗药性(AMR)是全球主要的健康问题,与2019年全球估计495万人死亡有关(1,2)。尽管已经对AMR对临床和经济结果的影响进行了广泛的研究,但对AMR对感染反复感的影响相对较少,这是一项重大事件,导致大量疾病,死亡和医疗保健成本(3)。复发在菌血症患者中特别关注,他们通常脆弱并且患有潜在的疾病,因为菌血症与高死亡率和AMR有关(4)。AMR与更大的感染严重程度,治疗衰竭更高的风险以及更长的住院时间有关,所有这些都可能影响复发的风险(5-7)。很少有研究研究AMR是复发性菌血症的潜在危险因素,并且所有研究都限于归因于引起初始感染的同一细菌的感染的复发(8-13)。相反,少数不针对特定细菌物种或患者人群(例如,具有潜在条件的人)和研究危险因素在1年内复发的危险因素并不认为AMR是潜在的危险因素(14-16)。然而,在研究AMR与复发之间的联系时,重要的是要考虑延长的微生物不平衡,即广谱抗生素暴露(即标准细菌治疗)可以诱导宿主微生物组。AMR在初始菌血症发作中可能会增加这种不平衡包括对宿主对定殖和感染的易感性的影响(17)以及对抗生素耐药细菌的选择和持续时间的影响,例如,扩展的谱β-内酰胺酶(ESBL)可能会超过1年 - 产生肠tocteriaceae(18)。
结核病 (TB) 是由结核分枝杆菌引起的,仍然是全球健康的重大威胁,估计 2022 年将影响 1060 万人。耐多药和广泛耐药菌株的出现迫使人们开发新型有效药物。加快确定这些药物的作用机制 (MOA) 对于推进结核病治疗至关重要。本研究介绍了 MycoBCP,这是针对结核分枝杆菌量身定制的独特细菌细胞学分析 (BCP),利用 BCP 中的卷积神经网络 (CNN) 来克服传统图像分析技术带来的挑战。使用 MycoBCP,我们分析了各种抗菌化合物对结核分枝杆菌的形态学影响,捕捉广泛的模式而不是依赖精确的细胞分割。这种方法避免了结核分枝杆菌中普遍存在的细胞聚集和染色不均匀等问题。在盲测中,MycoBCP 准确识别了 96% 化合物的作用机理,只有一次错误分类,即利福布汀,它被错误地归类为影响翻译而不是转录。转录和翻译抑制产生的相似形态表明需要进一步改进以更有效地区分它们。将 MycoBCP 应用于一系列抗结核药物,成功识别了已知的作用机理并揭示了独特的作用,证明了其在早期药物发现和开发中的实用性。我们的研究结果强调了基于 CNN 的 BCP 在提高作用机理测定的准确性和效率方面的潜力,特别是对于结核分枝杆菌等具有挑战性的病原体。MycoBCP 代表了结核病药物开发的重大进步,为高通量筛选抗菌化合物提供了一种强大且适应性强的方法。
这项研究旨在分析从Aculeata,Syagrus Cearensis和Attalea Speciosa果实中提取的固定油的化学成分,此外还评估了它们在打击抗性微生物(例如Escherichia coli and Escherichia coli and Chapherococcus aureus)中的功效。成熟的果实是在巴巴哈,卡拉(Ceara)区域收集的,并通过气相色谱法和质谱法(GC/MS)分析提取的油,以鉴定存在的化合物。使用96孔板中的微稀释法测试了抗菌活性,评估了不同浓度的油脂抑制细菌生长。对Aculeata,Attalea Speciosa和Syagrus cearensis的固定油的色谱分析显示,饱和脂肪酸的占主导地位,lauric Acid是最丰富的(41.71%至47.21%)。油酸和肉豆蔻酸也很重要,而硬脂酸和亚油酸的含量较小。Attalea Speciosa显示出40.17%对大肠杆菌的抑制作用,40.77%对金黄色葡萄球菌(1000μg/ml)的抑制作用。accocomia aculeata抑制了金黄色葡萄球菌的44.76%(1000μg/ml),而塞格鲁斯·塞拉西斯(Syagrus cearensis)对大肠杆菌具有中等活性。