燃料箱抗震稳定性计划由俄勒冈州立法机构于 2022 年制定(参议院法案 1567),由 DEQ 的土地质量部门实施。该溢油预防计划旨在评估和提高大容量石油和燃料储存设施的抗震能力。法律要求对哥伦比亚、莱恩和穆尔特诺玛县存储容量超过 200 万加仑的燃料储存和配送设施进行地震脆弱性评估和风险最小化。该计划保护公众健康、生命安全和环境免受地震引起的燃料泄漏和火灾的影响。环境质量委员会于 2023 年 9 月 15 日通过了规则,并建立了设施制定和提交地震脆弱性评估和风险缓解实施计划的流程,包括提交截止日期、批准标准、费用、实施时间表和向 DEQ 报告的要求。俄勒冈州行政法规第 340 章第 300 部分是在与地质和矿产工业部和俄勒冈州能源部协商后通过的。
简介:地震会对基础设施造成大规模破坏并造成人员伤亡。从 1990 年到 2010 年,印度经历了 9 次以上大地震,造成约 30,000 人死亡。虽然某些地区(例如 IS 1893(第 1 部分)-2016 规定的地震区 V 中的地区)更容易发生地震,但印度没有一个地区可以完全免受这种威胁。每天都会发生许多小地震。过去地震中建筑物的糟糕表现暴露了它们的脆弱性,促使工程师和建筑师优先设计更具抗震效率的结构。印度约 60% 的陆地面临中度至极重度地震的风险。人口稀少地区的大地震造成的破坏可能小于人口稠密地区的中度地震。大地震后的实地调查显示,大多数人员伤亡是由于建筑物倒塌造成的。缺乏抗震知识及其在建筑设计和施工中的应用导致结构失效。许多农村和城市建筑都是低层、非工程结构,最容易受到损坏。地震期间,地震波向四面八方辐射,水平振动尤其容易导致结构损坏。这些波会导致建筑物地基移动,从而在结构构件中产生惯性力。建筑物在地震中的抗震性能受其形状、大小和几何形状以及载荷路径特性的影响。抗震设计抗震设计理念旨在保护结构和人的生命。它要求承重构件在轻微、频繁的震动中保持完好无损,在中等、偶尔的震动中承受可修复的损坏,并在罕见的强烈震动中承受严重损坏而不倒塌。本研究考察了这些常见建筑类型的施工实践。在必要时,参考规范规定,为当地施工实践提供了建议。此外,本研究还讨论了抗震技术的潜在未来趋势。研究目标:本研究旨在调查地震对传统建筑和抗震建筑的影响。此外,该项目还旨在研究增强建筑结构抗震能力的先进材料及其开发方法。更具体的目标包括:
面对世界某些地区始终存在的地震威胁,建造能够抵御地震的建筑物已成为当务之急。抗震建筑展代表了建筑和工程创新的巅峰。这些展品生动地展示了先进材料、尖端结构设计和精心规划的和谐融合,所有这些都旨在最大限度地减少地震活动对建筑物的潜在破坏性影响,更重要的是,最大限度地保护建筑物内人员的安全。在地震带,地球板块汇聚的地方,传统的建筑设计往往容易受到地震期间释放的不可预测的力量的影响。然而,抗震建筑展证明了建筑师和工程师致力于创造不仅能承受地面无情震动,还能为里面的人提供避难所的建筑。这些展品不仅优先考虑生存所必需的结构坚固性,还采用了突破传统建筑界限的最先进的技术和方法。本介绍深入探讨了抗震建筑展示的多方面,探索了这些结构抵御地震强大力量的巧妙机制和设计原则。从基础隔离到阻尼系统,每个元素都发挥着至关重要的作用,将建筑转变为坚韧的堡垒,能够面对自然界最艰巨的挑战而屹立不倒。抗震建筑展示不仅仅是建筑实力的展示;它承诺保护生命,维护建筑环境的完整性,因为在这些地区,我们脚下的地面是一种动态且不断变化的力量。在随后的探索中,我们将剖析使这些展示成为抗震典范的功能机制和策略,说明它们如何重新定义结构工程领域的可能性边界。功能机制抗震建筑利用各种功能机制和工程策略来最大限度地减少地震力的影响。以下是抗震建筑展示中涉及的一些关键机制的分解:a.基础隔震: 功能:在地震期间将建筑物与地面运动分离。 机制:建筑物依靠柔性轴承或隔离器,使其能够独立于地面运动移动。
地震在世界各地肆虐,对建筑物造成了大量破坏,但仍有许多建筑物不符合现行抗震规范要求,因此需要进行抗震加固。在许多情况下,地震引起的破坏主要集中在低层钢筋混凝土 (RC) 结构上,这些结构的基本自振周期接近地震的主频。人们提出了不同的方法来减轻结构响应并耗散地震引起的能量 (Kim 2019)。增加钢支撑等额外刚度是传统且广泛使用的抗震加固技术 (Park et al . 2012, Maheri and Yazdani 2016, Mohammadi et al . 2020))。此外,采用狭缝阻尼器等金属耗能装置也被认为是结构抗震设计和加固的另一种有效手段(Zhang et al. 2015;Lee and Kim 2017;Javidan and Kim 2020;Dereje and Kim 2022)。
建筑,介绍了这些系统的性能,并提供了安装此类设备的建筑示例和案例研究。这两卷报告由日本建筑中心在日本建设部 (MOC) 的赞助下制作,旨在描述能量耗散系统的最先进技术并回顾其在减轻地震损害方面的应用。
摘要:在内华达大学雷诺分校的地震工程实验室,对一座由预制构件组装而成的大型双跨桥梁模型进行了一系列双轴地面运动模拟试验。在试验前,使用 OpenSees 软件开发的三维计算模型估算了桥梁的响应。试验后,将测量到的关键地震响应与计算模型预测的地震响应进行比较,以评估建模假设。观察到桥梁的位移、底部剪力和滞回响应存在较大的误差。本文讨论了地震荷载、材料、预制构件的连通性和计算模型中的边界条件对误差的影响。提出了未来的建模方向以减少这些误差。关键词:预制桥,计算模型,OpenSees,振动台试验。简历:Un puente de gran escala, de dos vanos, construido con varios elementos prefabricados fue ensayado bajo sismos biaxises en una mesa sísmica del Laboratorio de Ingeniería Sísmica de la Universidad de Nevada, Reno.通过使用 OpenSees 软件中的数字模型三维解集来估计预期的预测结果。在对数字模型的预测结果进行比较期间,重要的是要考虑模型的设计有效性。 La comparación reveló diferencias relativamente grandes en desplazamientos, cortante basal, y respuesta histerética.对西斯米卡的兴奋、材料、预制元件的连接、以及在文章中讨论的错误的前沿条件和错误的影响。不同的模型指导可以减少错误。参数:预制构件、计算模型、OpenSees、台面结构。
• B73 是一座小型两层木结构实验室和办公设施。 • 从 1960 年开始分阶段使用有色金属材料建造。 • 木材、有色金属结构和偏远位置最大限度地减少了磁“噪音”。
1 比利希姆创新中心,METU Technopolis,安卡拉 06510,土耳其 2 恰卡亚大学,建筑学院,建筑系,安卡拉 06530,土耳其 3 阿克德尼兹大学,建筑学院,建筑系,安塔利亚 07070,土耳其 4 阿克德尼兹大学,技术职业高中,安塔利亚 07070,土耳其 重点:图形/表格摘要 人工神经网络和深度学习方法 估计结构不规则性的新方法 深度学习和图像处理方法在抗震建筑设计中的应用 图 A. 图形摘要目的:本研究的目的是通过使用深度学习和图像处理方法,创建一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关结构系统决策是否符合抗震规定的一般信息,这些信息可在设计过程的早期阶段通过深度学习和图像处理方法进行。这样,在设计的早期阶段就能做出正确的决策,并防止在实施项目阶段可能发生的意外修改。理论与方法:在本研究中,我们提出了一个不规则控制助手 (IC Assitant),它可以为建筑师提供有关土耳其地震规范中定义的结构系统不规则性的一般信息,它是使用深度学习和图像处理方法开发的。PYTHON 是学术领域最常用的编程语言之一,PYTHON IDLE(集成开发和学习环境)用于创建应用程序。Image AI 工作库用于制作此软件产品。结果:向 IC 助手展示了以前没有给过机器的新计划,并询问这些计划中的结构系统是否按照地震法规的定义是规则的还是不规则的。结果表明,DK 助手可以成功地提供有关任何结构系统的规则性百分比的信息。结论:研究表明,深度学习和图像处理方法可用于在建筑设计过程的早期阶段发现结构不规则性。
项目发展:俄勒冈理工学院的应用行为分析 (ABA) 项目将设在 Boivin 内经过翻新的空间内。ABA 项目将打造一批认证专业人员,以满足俄勒冈州越来越多的自闭症谱系障碍年轻人的需求,并采用“教老师”模式来教育教育工作者和医疗专业人员。 服务学生:通过对 Boivin Hall 的投资,俄勒冈理工学院创新的第一年参与和学生保留中心将得以扩大。这是康复和现代化项目的一个关键目标,将提高俄勒冈理工学院学生的保留率并加快他们获得学位的时间。 利用技术:位于 Boivin Hall 的为整个大学服务的 IT 基础设施将得到升级,从而为全州和俄勒冈理工学院多个地点的学生提供同步和异步课程。它将扩大屡获殊荣的教学创新中心的规模,该中心测试新的教学技术并将现代教学法融入 STEM 和健康重点课程。
该项目部分资金由联邦公路管理局研究与发展办公室提供。作者对此表示感谢。作者还要感谢联邦公路管理局的 James Cooper