摘要:DNA折纸结构为具有纳米精度的单个生物分子的组织提供了灵活的Sca效果。当他们发现对多种生物应用的增加使用时,在定义的化学计量,高产量和保护蛋白质功能下的蛋白质的功能化仍然具有挑战性。在这项研究中,我们将单分子荧光显微镜与细胞生物学功能测定结合使用,以系统地评估DNA折纸结构特异性装饰的不同策略,重点介绍了效率,稳定量表,稳定量表和蛋白质功能。使用T细胞受体(TCR)的激活配体作为感兴趣的蛋白质,我们发现两种常用方法在化学计量和蛋白质功能方面表现不佳。While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-speci fi c attachment of a single biotinylated TCR-ligand.通过共价DNA结合,最直接的装饰策略导致配体效力降低了3倍,这可能是由于电荷介导的蛋白质功能受损所致。在配体共轭物中,用电荷中性肽核酸(PNA)代替DNA作为耦合策略,在我们的研究中具有最佳的整体性能,因为它产生了最高的产率,没有多价DNA折纸结构和完全保留的蛋白质功能。在我们的研究中,我们旨在为静态定义的,定义的,特定于位置的DNA折纸结构的蛋白质,具有可供选择的蛋白质,可用于广泛的生物学应用。关键字:DNA折纸,DNA纳米结构,蛋白质结合,功能化,单分子荧光显微镜,T细胞活化D
strands”在DNA折纸中,接吻环和RNA折纸中的其他连接器图案)。两种方法都已用于设计各种2D形状和3D结构(5,6)。大多数当前的3D折纸设计遵循在彼此顶部包装几层二维螺旋或螺旋束的方法,和/或弯曲的螺旋束如(7,8)中最初建议。3D设计的替代路径是创建一个线框结构,该结构仅包含3D模型的边界边缘和顶点。在这个方向上有几个值得注意的前虫前旅行(9,10),但是随着柔性且坚固的折纸技术的发展,它大多开始获得追随者(6,11)。与螺旋装箱相比,线框设计的一些优势包括使用链的经济,这允许建造较大的结构,并在低盐条件下更好地折叠。一些挑战是结构的刚性较低,尤其是对于大型的单螺旋边缘设计(可以通过使用多螺旋边缘来减轻,以增加链的使用来缓解)和大型复杂设计的产量低。已经存在几种核酸纳米结构设计工具(8、12、13、14、15、16、17、18、19、20、21)。Most of these however address helix-packing designs, with the more recent ones oriented towards wireframe structures including vHelix (14), DAEDALUS (15) and ATHENA (18) for 3D DNA wireframes, Sterna (20) for single-stranded 3D RNA wireframes and PyDAEDALUS (21) for 3D RNA/DNA hybrid wireframes.这些工具主要支持一种特定的设计方法,每个工具也都处于离线状态,需要一个单独的过程来安装工具及其辅助库,有时可能很难找到或在最坏的情况下弃用。
摘要 - 在神经外科手术中,软机器人有可能对传统金属工具引入显着的好处,以便它们能够安全地与精致的组织相互作用。在本文中,我们引入了概念验证柔软的电容折纸传感模块(OSM),该模块可以在神经外科缩回期间测量力。使用折纸风格的设计和制造原理,将OSM易于折叠并集成在软机器人牵开器中,该牵开器与脑组织相互作用,在致动后生成外科工作空间。我们演示了对力和折叠的单个OSM信号响应。我们进一步表征了完全组装的软机器人牵开器中的OSM响应,以折叠和在0-5 n上的折叠和应用程序的应用,显示0.38 N的平均预测误差和分辨率为0.25N。牵开器的传感能力均在维特罗模型上验证,以证明0.06 N和Neurosursursurosursurosursursurosursursursurosursurosursurosur ossurosursursurosursursurosursursurosursurosursursursursursursursursursursursursursursursursursursurosursurosursist。
在用于治疗复发性霍奇金淋巴瘤 [5,6] 的 Brentuximab vedotin (Adcetris) 和用于治疗 HER2 + 转移性乳腺癌 [7,8] 的 T-DM1 (Kadcyla) 获得美国食品药品管理局 (FDA) 临床批准的背景下。所谓的“魔弹”最初由 Paul Ehrlich 构想 [9],旨在将小分子药物的毒性与抗体的靶向能力结合起来,以提高总体疗效和治疗指数。[10–15] 尽管概念简单,但 ADC 的开发面临着若干挑战,包括可控的毒性、均质结合和有限的药物有效载荷能力。对于 ADC 来说,药物抗体比 (DAR) 和靶向能力之间的平衡是必需的,以降低候选药物的损耗率。DAR 非常高的 ADC 可能会降低对靶抗原的识别。 [16–19] 因此,开发具有高最大耐受剂量和高选择性的 ADC 是非常有必要的。[20–22]
基于蛋白质的病毒样颗粒(P-VLP)通常用于空间组织抗原并通过多价抗Gen显示器增强体液免疫。但是,p-vlps是胸腺依赖性抗原,它们是自我免疫原性的,可以诱导可能中和平台的B细胞反应。在这里,我们研究了使用SARS-COV-2峰值蛋白的受体结合结构域(RBD)的多价抗原显示的替代性DNA折纸,这是Neu-Tralization抗体反应的主要靶标。用基于DNA的VLP(DNA-VLP)对小鼠进行顺序免疫,以依赖于显示的抗原和T细胞帮助的抗原价值的方式,会在SARS-COV-2中保护对SARS-COV-2的中和抗体。重要的是,与p-vlps相比,免疫血清不包含针对DNA支架的抗体抗体,而P-VLP会引起针对靶抗原和支架的强B细胞记忆。因此,DNA-VLPS增强了目标抗原免疫原性,而无需产生支架定向免疫,从而为颗粒疫苗设计提供了重要的替代材料。
除静态纳米结构外,DNA纳米技术还能构建动态和自主开关。[18] 这些动态开关的操作可分为两大类:第一,通过分子相互作用操作;第二,通过外部刺激操作。用于控制纳米尺度运动的主要分子相互作用是DNA杂交(主要是立足点介导的链置换)和碱基堆积。由分子相互作用控制的此类运动的例子包括可重构等离子体装置、[19] 铰链、[20,21] 镊子、[18,22] 旋转装置、[23–26] 助行器、[27] 药物载体 [28,29] 和对分子或纳米颗粒进行分选的机器人。[30,31] 作为驱动机制的其他分子相互作用包括靶分子结合 [32,33] 和适体 [28,29] 以及核小体相互作用。 [34] 通过任何分子相互作用进行的操作(包括上述所有机制)具有可控分子识别和特异性的优点。 然而,操作速度受到分子扩散和相互作用动力学的限制,因此通常非常慢。 值得注意的是,已经开发出多种方法来提高动态 DNA 装置的响应速度。 另一方面,外部刺激如光、[35,36] 温度、[37] 离子、[11,23] pH、[38–40] 和电场 [21,41] 通常能够使操作速度提高很多个数量级。[41] 例如,Karna 等人利用相邻纳米结构域之间可逆的、pH 依赖性的 i-基序形成来促进卷曲 DNA 纳米弹簧的驱动,进而通过整合素偶联影响培养细胞的运动性。 [40] 然而,我们在此称之为外部刺激的任何一种,都存在着整体作用的局限性,而且缺乏分子识别所能提供的特异性。
AFM显微照片(图S1)。D H分布记录在分散在Tris-Edta(TE)缓冲液中的CMP上的Malvern-Zetasizer-Nano仪器上(5 mM Tris,1 mm EDTA,1 mm EDTA,5 mm NaCl,pH 7.3)。(d)菌株促进的叠氮化物 - 烷基环加成(SPAAC)的方案 - 铜铜的铜线自由点击反应在叠氮化物标记的CMPS和二苯并杂志环链(DBCO) - 修饰的ssDNA低聚物之间。(e)根据耗尽测定估计的平均值(SEM)标准误差的平均ssDNA数量与标称移植密度r(x)相比。(f)在90 MA处的0.5%琼脂糖凝胶上,在不同的R(x)值上对CMP和CMP-DNA偶联物进行的琼脂糖凝胶电泳移位测定,P代表装载口袋。(g)CMP-DNA的凝胶相对前(r f)相对于r(0)样品的r f,无ssDNA作为r(x)的函数。(h)CMP-DNA偶联物的体积加权粒子流体动力学大小(D H)作为R(x)的函数。面板F和G中的实线是拟合参数r f lemal = 0.42 dna/nm 2和n = 6.3和r falt = 0.48 dna/nm 2和n = 4.5的山丘方程。比例尺分别在面板(a)和(b)中为50和100 nm。
DNA纳米结构是一类自组装纳米材料,在生物医学和纳米技术中具有广泛的潜在应用。使用人直觉或简单算法的简单DNA Polyhedra的发展可以追溯到1980年代。今天,该领域以DNA折纸构建体为主导,以至于丢失了用于设计非原虫纳米结构的原始算法。在这项工作中,我们描述了Arktos:一种用于设计简单DNA Polyhedra而无需使用DNA折纸的算法。arktos设计序列被预测使用模拟退火优化折叠成所需的结构。作为概念证明,我们使用Arktos设计了一个简单的DNA四面体。合成了生成的寡核苷酸序列,并通过聚丙烯酰胺凝胶电泳对实验验证,表明它们折叠成所需的结构。这些结果表明,根据研究界的需求,Arktos可用于设计自定义DNA Polyhedra。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。