摘要:神经电极是神经科学、神经疾病和神经机接口研究的核心设备,是连接大脑神经系统和电子设备的桥梁。目前使用的大多数神经电极都是基于刚性材料,其柔韧性和拉伸性能与生物神经组织有显著不同。本研究采用微加工技术开发了一种基于液态金属 (LM) 的 20 通道神经电极阵列,该阵列采用铂金属 (Pt) 封装材料。体外实验表明,该电极具有稳定的电性能和优异的机械性能,如柔韧性和弯曲性,使电极与颅骨形成保形接触。体内实验还使用基于 LM 的电极从低流量或深度麻醉下的大鼠记录了脑电信号,包括由声音刺激触发的听觉诱发电位。使用源定位技术分析了听觉激活的皮层区域。这些结果表明,基于 20 通道 LM 的神经电极阵列满足脑信号采集的需求,并提供支持源定位分析的高质量脑电图 (EEG) 信号。
可穿戴电子系统能够监测和测量多种生物物理、生化信号,帮助研究人员进一步了解人类健康以及人类表现与疾病之间的关系。在体育训练、健康监测和疾病诊断需求不断增长的推动下,基于材料科学、结构设计和化学技术的最新进展,生物集成系统正在以惊人的速度发展。各种可穿戴系统被创造出来,具有独特的测量目标和方法以及柔软、透明、可拉伸的特性。本综述总结了可穿戴电子技术的最新进展,其中还包括材料科学、化学科学和电子工程。可穿戴基础知识的介绍涵盖了随后对材料、系统集成和有前景的平台的考虑。还提到了对其物理和化学检测功能的详细分类。充分讨论了实现可拉伸性的策略和有前景的材料 AgNW。本文最后讨论了这一新兴领域面临的主要挑战性障碍,并承诺将开发出具有良好发展潜力的材料。
与刚性印刷电路板 (PCB) 和柔性 PCB 相比,软电路具有更高的稳健性和更好的机械阻抗匹配性,可与更广泛的宿主表面(包括纺织品和人体软组织)匹配。然而,可拉伸电子产品开发中的一个关键挑战是使用可印刷油墨的能力,这种油墨在 > 100% 的大应变下仍能保持高电导率和稳定的走线电阻。一种有前途的方法来创建具有低机电耦合的柔软、可拉伸和可印刷电子产品,就是将微流体通道或液态金属 (LM) 液滴整合到软弹性体中。[8,9] 镓基 LM,例如共晶镓铟 (EGaIn),因其高导电性、低流体粘度和可忽略不计的毒性而特别受欢迎。[10] 然而,制造带有 LM 导体的电路通常需要大量劳动力,并且需要许多手动步骤。由于 LM 的粘度低、表面张力高且与基板的粘附性差,直接打印 LM 也具有挑战性。因此,研究人员试图提出创新技术,以打印基于 LM 的电路。在一项研究中,EGaIn 沉积在印刷的 Ag 纳米墨水上,以实现电导率提高 6 个数量级、应变耐受极限提高 20 倍以上。[11] EGaIn 还用于选择性润湿光刻图案化的铜 (Cu) 走线,以创建高性能集成电路 [12],并且还沉积在电纺弹性纤维垫上,以获得具有高导电性和可拉伸性的薄膜导体。[13] 在另一项最近的研究中,LM 和银薄片悬浮在热塑性弹性体中,并用于具有极高拉伸性 (2500%) 的摩擦电纳米发电机。 [14] 其他努力包括利用 EGaIn 液滴渗透网络,无论是印刷迹线的形式 [15,16,17] 还是由悬浮在弹性体基质中的 LM 液滴组成的橡胶复合材料。[18,19,20] 然而,这些使用 LM 液滴印刷软电子器件的方法需要额外的热、光学或机械烧结步骤,以及其他形式的后处理以诱导电导率,并且印刷适性对于与微电子集成的应用受到限制
柔性设备的研发仍任重道远,并且充满了障碍,严重阻碍了此类系统的发展。[3] 在主要的限制因素中,我们可以观察到,迫切需要有效的策略来在柔性基板上获得导电路径。[4] 此外,即使柔性是强制性的,可拉伸基板也更受欢迎,因为便携式设备领域正在朝着可穿戴配置的方向发展。这意味着不可能将柔性和拉伸性分开。在这种背景下,在石墨烯基材料大家族中,激光诱导石墨烯应运而生[5],成为制造柔性电子设备最有前途的材料之一。[6] 然而,尽管在新基板上开发 LIG 付出了无数努力,但仍然缺乏适用于激光石墨化的可拉伸聚合物。[7] 事实上,到目前为止,还没有观察到弹性基板石墨化的证据。就弹性体聚合物家族而言,聚二甲基硅氧烷 (PDMS) 是微系统技术中最受欢迎的弹性体材料,因为它具有诱人的物理和化学特性,例如弹性、低至 220 nm 的光学透明度、可调的表面化学性质、低水渗透性但高气体渗透性和高介电性能。此外,它是一种经济高效的材料,可用于开发可靠的大规模复制技术。[8]
摘要:由于电子电路易于集成在 3D 表面上,三维印刷电子产品的发展引起了人们的极大兴趣。然而,要实现用于在可热成型基材上印刷的导电糊剂所需的贴合性、可拉伸性和附着力仍然非常具有挑战性。在本研究中,我们建议使用由涂有银的铜片组成的新型可热成型油墨,这使我们能够防止铜的氧化,而不是常用的银油墨。研究了各种聚合物/溶剂/薄片系统,从而产生了可在空气中烧结的可热成型导电印刷组合物。将最佳油墨丝网印刷在 PC 基材上,并使用具有不同应变程度的模具进行热成型。研究了各种成分对热成型能力以及所得 3D 结构的电性能和形态的影响。最佳油墨在 20% 热成型前后分别产生低薄层电阻率,分别为 100 m Ω / □ /mil 和 500 m Ω / □ /mil。证明了使用最佳油墨在 PC 基板上制造可热成型 3D RFID 天线的可行性。
• Small, “基于透明离子水凝胶电极和量子点颜色转换的高变形电致发光装置实现明亮的双面白光照明“(2024) • Advanced Science, “导电水凝胶在日常生活中的无缝集成:从准备到可穿戴应用”(2024) • Advanced Functional Materials, “用于明亮电致发光装置的光学透明和机械坚固的离子水凝胶电极,实现超过 1400% 的高拉伸性”(2023) • Advanced Functional Materials, “智能皮肤粘合贴片:从设计到生物医学应用“(2023) • Chemical Engineering Journal, “用于在不同气候条件下自适应太阳能控制的自粘热致智能薄膜“(2022) • 科学和信息通信技术部, “通过控制分子间相互作用具有可变机械性能的软材料“(~2026) •科学和信息通信技术部,“可持续太阳能利用研究中心”(~2025 年) • 三星电子,“利用分子开关定时器开发超高线性动态范围图像传感器”(~2023 年)
目前对可降解亚胺基聚合物半导体分子设计原理的理解仅限于半结晶聚合物形态。在此,我们设计并合成了一类基于吲哚并二噻吩 (IDT) 单元的新型可降解纳米晶体半导体聚合物,所用方法比常用的 Stille 缩聚反应毒性更小。由于可降解 IDT 基聚合物薄膜缺乏长程有序性,我们表明,在保持与可降解半结晶二酮吡咯并吡咯 (DPP) 基对应物相似的电子性能的同时,可以实现增强的拉伸性。通过紫外-可见光谱、凝胶渗透色谱、核磁共振光谱和石英晶体微天平进行的降解研究表明,IDT 基聚合物的降解速度比半结晶 DPP 基聚合物快几个数量级(在溶液中数小时内,在薄膜中一周内)。此外,与半结晶 DPP 基聚合物相比,IDT 基聚合物可以在更温和的酸性条件(0.1 M HCl)下降解,这类似于人体内的酸性环境,并且允许从合成到降解的条件更加环保。我们的工作加强了我们对聚合物半导体结构-降解特性关系的理解,并为可触发、按需降解的瞬态电子器件铺平了道路。
用于收集生物电信号的柔软且灵活的设备的开发正在为可穿戴和可植入应用获得动力。在这些设备中,有机电化学晶体管 (OECT) 因其低工作电压和大信号放大而脱颖而出,能够转换微弱的生物信号。虽然液体电解质已证明在 OECT 中有效,但它们限制了其工作温度,并且由于潜在的泄漏而对电子封装构成挑战。相反,固体电解质具有机械灵活性、对环境因素的稳健性以及桥接刚性干电子系统和柔软湿润生物组织之间界面的能力等优势。然而,很少有系统表现出与各种最先进的有机混合离子电子导体 (OMIEC) 的通用性和兼容性。本文介绍了一种高拉伸性、柔韧性、生物相容性、自修复性的明胶基固态电解质,该电解质与 p 型和 n 型 OMIEC 通道兼容,同时保持高性能和出色的稳定性。此外,这种非挥发性电解质在高达 120°C 的温度下仍保持稳定,即使在干燥环境中也表现出高离子电导率。此外,还展示了一种基于 OECT 的互补逆变器,其归一化增益创下了 228 V − 1 的最高纪录,相应的静态功耗超低为 1 nW。这些进步为从生物电子学到节能植入物的多种应用铺平了道路。
可穿戴电子系统的快速发展需要一种可持续的能源,这种能源可以从周围环境中获取能量,而不需要频繁充电。压电聚合物薄膜具有柔韧性、良好的压电性,以及由于其固有极化而具有的与环境无关的稳定性能,是制造压电纳米发电机 (PENG) 以从环境中获取机械能的理想选择。然而,由于分子极化和不可拉伸性,它们的大部分应用仅限于基于 3-3 方向压电效应的按压模式能量收集。在本研究中,通过在基于聚合物薄膜的 PENG 上 3D 打印拉胀结构,PENG 的弯曲变形可以转化为良好控制的平面内拉伸变形,从而实现 3-1 方向压电效应。首次将膨胀结构的同向弯曲效应应用于柔性能量收集装置,使以前未开发的薄膜弯曲变形成为一种有价值的能量收集装置,并将 PENG 的弯曲输出电压提高了 8.3 倍。膨胀结构辅助的 PENG 还被证明是一种传感器,可通过安装在人体和软机器人手指的不同关节上来感应弯曲角度并监测运动。
摘要 - 振动感知可以帮助机器人识别其动态状态以探索周围环境。但是,软机器人的内在可拉伸性为整合振动传感器带来了挑战。这项研究引入了一种创新的可拉伸电子皮肤(E-SKIN),可促进软机器人中的振动本体感受。以大约0.1 mm的厚度结构,该超薄e-Skin是使用带有液态金属颗粒(LMP)的屏幕打印技术生产的,并结合了Kirigami设计以进行无缝集成。基于Triboelectric纳米生成器的感应机制的E-Skin作用,该机制将机械振动转导为没有外部电源的电信号。通过分析由软机器人的动态运动产生的振动信号,E-Skin显示了广泛的应用。从软机器人手指的滑动运动的振动信号中,可以以99%的精度区分17种不同的纹理。此外,对软机器人抓手的摇摆运动的振动信号的分析可以估算其抓地的容器内部晶粒的类型和重量,分别达到97.7%和95.3%的精确度。因此,这项工作提出了一种实现软机器人振动本体感受的新方法,从而扩大了动态本体感受在软机器人技术中的应用。