Shib Shankar Banerjee 1,#、Subhradeep Mandal 1、Injamamul Arief 1、Ramakanta Layek 2、Anik Kumar Ghosh 1、Ke Yang 3、Jayant Kumar 3、Petr Formanek 1、Andreas Fery 1、Gert Heinrich 1,4、Amit Das 1,5 * 1 德累斯顿莱布尼茨聚合物研究所 e。 V,Hohe Straße 6,德累斯顿,01069,德国 2 LUT 大学,拉赫蒂,Mukkulankatu 19,FI-15210,芬兰 3 马萨诸塞大学洛厄尔分校,先进材料中心,物理系,MA 01854,美国 4 德累斯顿工业大学,纺织机械和高性能材料技术研究所,Hohe Straße 6,德累斯顿,01069,德国 5 坦佩雷大学,工程与自然科学系,FI-33101,芬兰
我们认为,替代的COVID-19疫苗给药方案可能会大大加速全球COVID-19-19疫苗接种并降低死亡率,并且测试这些方案的成本因其潜在收益而矮。我们首先使用中和抗体反应与对疾病有效性之间的高相关性(Khoury等al。2021)表明,某些疫苗的一半甚至四分之一剂量会产生与高疫苗功效相关的免疫反应。然后,我们使用SEIR模型来估计,在这些功效水平下,使用分数剂量将疫苗接种率翻了一番或四倍将大大降低感染和死亡率。由于免疫反应与疗效之间的相关性可能无法完全预测分数剂量的功效,因此我们使用SEIR模型表明分数剂量将大大降低在广泛的合理疗效水平上的感染和死亡率。针对一系列疫苗和剂量组合的进一步的免疫原性研究可能会在数周内提供结果,并且可以与数百位健康的志愿者一起进行。国家监管机构还可以决定基于现有的免疫反应数据在疫苗接种运动中测试分数剂量的功效,就像有些延迟的第二剂量一样。如果效力证明很高,则可以广泛地实施该方法,而事实证明该方法很低,则可以通过对接受分数剂量的人进行全剂量来限制下行风险。SEIR模型还表明,延迟第二次疫苗剂量可能会对多个(但不是全部)疫苗变化的组合具有可观的死亡率,从而强调了正在进行的监视的重要性。最后,我们发现,对于在批准但较低的疗效疫苗之间进行选择的国家,立即使用的效力疫苗和等待mRNA疫苗,使用立即可用的疫苗通常会降低死亡率。
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。
电子产品。 [1–3] 然而,电子设备数量的迅速增加引发了严重的环境问题,因为通过填埋不当处理科技废物、使用有毒物质以及大量的碳足迹对自然构成了巨大威胁。 [4] 由于回收利用往往不切实际且成本高昂,如果能够缩小与传统电子产品的性能差距,新兴的可降解电子产品将提供一种可持续的解决方案。 [5] 对于可拉伸系统,这对所用材料的机械性能提出了严格的要求。包括传感器在内的保形电子皮肤完全是柔软的,但为了达到高度的不可感知性,需要可拉伸的设备。 拉伸性使其对使用过程中的表面和变形的适应性更高。 [6] 此类设备的可生物降解版本需要开发与其保形性和可降解性相匹配的电源。 [7] 据报道,完全可降解超级电容器能够为手表供电,且具有高面积电容,但它们的低能量密度和负载下工作电压线性下降使得它们不适合耗电的电子应用。 [8,9] 另一方面,可拉伸电池提供稳定的工作电压和更长运行时间所需的高能量密度。 到目前为止,这些设备主要利用不可降解和有毒材料的优势。 [10–12] 虽然完全可降解软电池在功率输出方面有所改进,但它们还无法与不可降解设计相媲美,而且它们的可拉伸实现仍处于起步阶段。 [13–15] 刚性可降解电源通常利用镁、铁或钼等金属的高理论能量密度,但实现相同的可拉伸版本仍然是一个挑战。 [16,17] 此类金属通常几乎不表现出超出一定程度的不可逆延展性的固有拉伸性。这可以通过各种后处理方法(例如薄膜屈曲、刚性岛设计)来解决,但是,这些方法需要简单易行,并且不能过度损害性能。[18] 预拉伸基板上的电极膜屈曲虽然提供了可逆拉伸性,但迄今为止仅报道了不可降解电极材料,如聚二甲基硅氧烷-碳纳米管复合材料或金属化聚对苯二甲酸乙二醇酯 (PET) 箔。[19,20] 此类
导电墨水广泛用于各个领域,尤其是在电子印刷行业中。导电墨水更加灵活,更小,并且具有多功能功能。本研究旨在研究拉伸应力下导电墨水的电阻率。将碳导电墨水印在热塑性聚氨酯(TPU)上,并在120°C的烤箱中固化30分钟。将导电墨水夹在拉伸设备上,并以不同的伸长值拉伸。电阻率是通过多米测量的,板电阻是通过四点探针测量的。在40 mm的导电墨水中,初始电阻为0.562kΩ,当将其伸展到其初始长度的18%时,它变为1.217kΩ。由于拉伸应力下导电墨水表面的缺陷,导电墨水的电阻也增加了。在40毫米的导电墨水中,板电阻在初始状态下为793.17 r/sq,并在伸展至其初始长度的18%时变为3059.37 r/sq。通过比较导电墨水的不同长度,可以在5.6mm的伸长率下观察到40 mm导电墨水的裂纹点,应变水平为0.14。60mm导电墨水的裂纹点为9.6mm,应变水平为0.16。不同导电墨水之间的开裂点的应变水平非常闭合。当应变水平达到0.15左右时,导电墨水开始破裂。总而言之,在拉伸应力下,板电阻和电阻率正在增加,这意味着电导率下降。
由于热拉伸技术具有高度的可扩展性、均匀性以及材料和结构兼容性,热拉伸多材料纤维在过去的二十年中得到了快速的发展。本文综述了基于不同功能结构的各种多材料纤维及其在不同领域的应用。我们从热拉伸纤维早期开发的光纤中实现的功能结构开始。随后,我们介绍了多材料纤维中典型的功能结构和为不同应用而创建的独特结构。接下来,我们介绍了打破热拉伸纤维的轴对称结构以扩展功能的早期尝试。此外,我们总结了在热拉伸纤维上创建表面结构的最新进展。最后,我们对这一热门主题在可穿戴设备和智能纺织品方面的发展进行了展望。
摘要:我们认为,替代性covid-19疫苗剂量方案可能会大大加速全球共证体-19疫苗接种并降低死亡率,并且测试这些方案的成本与其潜在的受益人相矮。我们首先使用中和抗体反应和对疾病的效率之间的高相关性(Khoury等al。2021)表明,某些疫苗的一半甚至四分之一剂量会产生与高真空效应相关的免疫反应。然后,我们使用SEIR模型来估计,在这些效率水平下,使用替代剂量将疫苗接种率加倍或四倍,将大大降低感染和死亡率。由于免疫反应与有效性之间的相关性可能无法完全预测效率,因此我们使用SEIR模型表明,替代剂量将大大降低多种合理效率水平的感染和死亡率。对一系列疫苗和剂量组合的进一步的免疫原性研究可能会在数周内解散,并且可以与数百名健康的志愿者一起进行。国家监管机构还可以决定基于现有的免疫反应数据在疫苗运动中测试替代剂量的效率,就像有些人对延迟的第二剂剂量所做的那样。如果效率很高,则可以广泛地实施该方法,而事实证明该方法很低,下行风险可能会通过对接受过剂量剂量的人进行全剂量限制。SEIR模型还表明,延迟第二次疫苗剂量可能对多种(但不是全部)疫苗变化的组合具有实质性的死亡率,从而强调了正在进行的监视的重要性。最后,我们发现,对于在经过证明但立即使用效率疫苗和等待mRNA疫苗之间选择的国家,使用立即可用的疫苗通常会降低死亡率。
>×ŝnŝnjIHP是德国研发机构,专注于无线和宽带通信。核心竞争力是:•混合信号过程技术•RF和数字电路设计•通信ɛ系统IHP IHP正在运行8英寸的飞行线,该线位于1,000平方米级级别的清洁室中。几个0.25 µm和0.13 µm SIGE:C BICMOS技术可用。IHP解决方案GmbH是IHP的100%子公司。 IHP解决方案旨在集中于IHP研究活动的研究结果(技术转移)以及沿IC制造价值链中增值服务的商业合作伙伴的研究结果(技术转移)。 在IHP服务产品的背景下,IHP解决方案ɛ负责商业IC生产。IHP解决方案GmbH是IHP的100%子公司。IHP解决方案旨在集中于IHP研究活动的研究结果(技术转移)以及沿IC制造价值链中增值服务的商业合作伙伴的研究结果(技术转移)。在IHP服务产品的背景下,IHP解决方案ɛ负责商业IC生产。
1 延世大学电气电子工程学院,首尔 03722,韩国 2 韩国科学技术研究院生物医学研究所仿生学中心,首尔 02792,韩国 3 成均馆大学电气与计算机工程系,水原 16419,韩国 4 韩国科学技术大学 KIST 学院生物医学科学与技术系,首尔 02792,韩国 5 成均馆大学智能精准医疗融合系,水原 16419,韩国 6 成均馆大学生物医学工程系,水原 16419,韩国 7 成均馆大学超智能工程系,水原 16419,韩国 * 通讯地址:mikyungshin@g.skku.edu (硕士);daniel3600@g.skku.edu(博士)