在定向能量沉积 (DED) 中,局部材料微观结构和抗拉强度由零件上每个空间位置经历的热历史决定。虽然先前的研究已经调查了热历史对机械性能的影响,但仍然需要一种物理上可解释、简约且具有良好预测精度的抗拉强度预测模型。本文研究了一种基于 Shapley 加性解释 (SHAP) 模型解释的数据驱动预测模型来解决这一问题。首先,将从先前的实验工作中翻译出来的物理上有意义的热特征用作神经网络的输入,以进行抗拉性能预测。然后计算各个输入特征的 SHAP 值,以量化它们各自对抗拉性能预测的影响,并使用累积相对方差 (CRV) 度量降低模型复杂性。对实验获得的 Inconel 718 (IN718) 抗拉强度的预测表明,通过开发的方法量化的特征影响可以通过先前研究的结果来验证,从而证实了神经网络预测逻辑的物理可解释性。此外,基于CRV的模型复杂度降低表明,简约模型只需要不到10%的原始特征即可达到与先前文献报道相同的拉伸强度预测精度,从而证明了基于SHAP的特征降低方法在改进DED过程表征方面的有效性。
柔性电子设备在可穿戴设备、植入式设备、机器人和显示器等许多未来技术中都有着广阔的应用前景。在各种机械柔性中,可拉伸性是一项重大挑战。一个特别艰巨的目标是实现一种高性能透明电极,这种电极既能承受拉伸,又能大规模生产,同时又能避免对设备密度产生额外的限制。在这项研究中,通过对 3D 波纹图案和平面表面的统计比较,证明了 3D 波纹图案表面使沉积的氧化铟锡电极的应变性能提高了三倍,其中氧化铟锡电极被拉伸至电气故障。此外,该平台减轻了残余薄膜应力,使基板的处理更加容易。这项研究证明了使用可扩展平台实现未来电子设备可拉伸性的可行性,该平台仅使用常规材料和制造步骤就结合了高性能透明电极材料。
截至2022年6月,该部门的2.5%的劳动力被认为是原住民,而南澳大利亚州的总公共部门为2.12%。我们尚未在某些就业类别中达到2%的代表性,包括学龄前和学校的教师以及学校的校长和领导者。我们对成为文化安全,包容和热情的工作场所的说唱承诺旨在支持和发展整个部门的原住民劳动力。这包括支持可能将部门视为未来雇主的原住民学生。
增材制造已从一种快速成型技术发展成为一种能够生产高度复杂零件的技术,而且这些零件的机械性能优于传统方法。利用激光加工金属粉末,可以加工任何类型的合金,甚至金属基复合材料。本文分析了激光粉末床熔合加工的 316L 不锈钢的拉伸和压缩响应。通过光学显微镜评估了所得的微观结构。关于机械性能,确定了屈服强度、极限拉伸强度、断裂前伸长率、抗压强度和显微硬度。结果表明,微观结构由堆叠的微熔池构成,由于高热梯度和凝固速度,熔池内形成了细胞状亚晶粒。抗压强度(1511.88 ± 9.22 MPa)高于拉伸强度(634.80 ± 11.62 MPa)。这种差异主要与应变硬化和残余应力的存在有关。初始显微硬度为206.24±11.96 HV;压缩试验后,硬度增加了23%。
添加剂制造已从快速原型技术发展为一种能够生产具有高度复杂零件的机械性能,而机械性能超过了传统上实现的特性。 div>激光技术对金属粉末的加工允许处理多种合金甚至复合材料。 div>这项研究分析了通过选择性激光融合合并的316L不锈钢的牵引和压缩响应。 div>通过光学MI磨练分析了结果分钟。 div>关于机械性能,对蠕变的抗性,对牵引力的最终抵抗力,裂缝前经济百分比,对理解和微量残留性的抗性。 div>结果表明,微观结构是由堆叠的熔融微底裂组成的,在该微孔中,由于高热梯度和高固化速度,生成了细胞子图。 div>压缩抗性(1511.88±9.22 MPa)优于牵制性(634.80±11.62 MPa)。 div>这种差异主要与变形硬化和残余张力有关。 div>最初的微腐烂率为206.24±11.96 HV,在压缩测试后,硬度增加了23%。 div>
拉伸结构的起源,例如历史,早期社会的巧妙生活安排,例如游牧民族和部落社区使用黑色帐篷,拉伸结构带来了许多好处。过去,它们是体育中心,农业工业建筑和竞技场的封面。随着工业革命的展开,由于其成本效益作为一种实用的屋面解决方案,拉伸结构的大规模生产激增。令人着迷的拉伸结构世界不仅仅是建筑物。这是关于新想法和设计如何共同改变我们通常构建事物的方式。拉伸结构是我们研究的主要重点,不仅有用。它们是一种独特的工程艺术。想象一下很大的空间,上面有一点支撑,做出了一种非常好看,高效的建筑方式。拉伸结构使用柔性材料(如织物或支撑点之间伸展的电缆)从紧密的力中获得强度。在本论文中,我们将仔细研究这些结构,弄清楚它们如何在三个维度上像檐篷或表面一样形成。拉伸结构在许多不同的地方使用,从著名的地标和运动竞技场到临时凉亭和环保建筑。在我们探索这个主题时,目标是了解使拉伸结构起作用的主要思想,表明它们在建筑设计和所涉及的惊人工程方面的灵活性。这一旅程旨在增加有关现代建筑方式的讨论,并强调拉伸结构在塑造当今建筑物的外观以及挑战通常做事的方式方面的重要性。
Sattar,N。等。(2023)通过变化血浆蛋白的变化对心脏代谢健康的预测,并在直接和DIADEM-I随机临床试验中有意减轻2型糖尿病缓解。糖尿病护理,46(11),pp。1949-1957。(doi:10.2337/dc23-0602)此版本和已发布的版本之间可能存在差异。,如果您想从中引用出版商的版本,建议您咨询出版商的版本。
在生物体验系统中,信息的感知,转移和处理依赖于分布的平行神经网络来有效解决复杂而非结构化的现实世界问题。1,2,例如,Tac-Tile感觉与机械信号转换为机械感受器的电信号有关。3然后这些电信号通过神经纤维流动到拟南芥,诱导神经递质的释放和突触后膜的发射,最后将它们传递到大脑中以形成触觉。神经编码和学习是在协作和处理外部信息的过程中进行的。受到生物系统的启发,已经开发出神经形态电子来重建和增强智能功能,4
摘要:阐明电荷序列对聚电解质构象的影响对于理解许多生物物理过程并推进序列定义的聚合物材料的设计很重要。可以使用多肽研究这种作用,该效应允许与精确的单体序列合成聚合物链。在这里,我们使用单分子力实验来探索电荷间距对多肽构象的影响。我们测试了由亲水性且无带电或负电荷的单体组成的多肽序列。我们发现链持续长度对净电荷和离子强度不敏感。随着溶液的增加离子强度,我们观察到溶剂质量的良好到表面的转变,其theta点随电荷间距而缩放。因此,我们的结果揭示了静电驱动的排除体积效应和不敏感的局部构象柔韧性之间的复杂相互作用,我们认为这与带电组在侧链上的位置有关。■引入生物聚合物,例如核酸和蛋白质,将它们的结构和功能直接编码到其序列中。这激发了序列定义的聚合物材料的设计,其工程结构和功能复杂性接近自然界中的序列和功能复杂性。1-4此类材料的从头设计需要对单体序列如何影响聚合物的结构和结构的基本理解。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。8,9例如,发现由具有较长电荷块的链形成的复杂凝聚力具有较高的临界盐浓度。具体而言,已经广泛探索了聚电解质中的静电效应,因为它们可以驱动结构形成以及与环境中其他分子的相互作用。调节聚电解质的电荷序列已显示出显着改变其构象行为5-7以及在许多生物物理过程中的活性。10,11
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。