在上肢假肢领域,感觉反馈的结合对于认知过程和行为至关重要。研究表明,触觉反馈改善了截肢者对假体的控制。这项研究介绍了Muviss(多纤维状运动皮肤拉伸)触觉装置的发育,该触觉装置戴在手腕和前臂上,并从机器人假肢手中提供感觉运动反馈。提出了一种创新的反馈策略,该策略尚未在现有文献中探讨。通过结合两种已经建立的策略 - 即,与本体感受结合伸展皮肤并结合了联系 - 该研究提供了一种未开发的感觉反馈方法。改编对商业上可用的Taska假肢手,以集成传感器并捕获触觉反馈的数据。对非开拓者受试者进行的两类测试表现出了有希望的功效和性能。与五名参与者一起进行了一系列测试,旨在评估Muviss反馈的有效性,分别测试每个反馈。为了评估整个系统的有效性,还对九个受试者进行了测试,并控制了假肢。他们允许通过振动将Muviss反馈与经典的力量反馈进行比较,并且没有触觉反馈。结果表明,新的反馈解决方案能够在没有视力的情况下提供尺寸和刚度信息。此外,反馈改善了电动机任务的性能,特别是用视觉抓住大理石。研究表明,该系统有可能改善控制,提高性能并对操作假体设备的整体体验产生积极影响。
使用迷你领导的设备和SIBS基板上的印刷图像的原始和剪切的SIBS膜之间垂直失真和变形差异的可视化。a)未拉伸设备的照片,d)印刷图像; b)设备和e)原始SIBS基板上的印刷图像伸展50%。c)设备和f)在剪切的SIBS基板上打印的图像伸展50%。(a – c)中的白色比例尺和(d – f)中的黑色比例尺每个代表1 cm。信用:高级材料(2024)。doi:
可以通过刚性纸来创建可弹性变形的材料,通过对可以局部弯曲和弯曲的适当网格进行图案。我们演示了如何使用三光束干扰光刻在大面积上制造微观模式。我们产生的网格在任何刚性材料膜中都会引起较大且可靠的弹性。微涂层微观会产生可拉伸的导电膜。当样本可逆地拉伸至30%并且没有引入重大缺陷时,电导率变化可以忽略不计,而与迅速撕裂的连续纸相比。缩放分析表明,我们的方法适合于进一步的微型化和大规模制造可拉伸功能膜。因此,它为电子,光子和传感应用中的可拉伸互连以及各种其他可变形结构打开了路线。
,尤其是识别软导管技术。[3,4]甘露和甘露的液体金属(LMS)引起了人们的关注。[5]利用其接近室温的液体 - 固体相变(t = 29.8°C)和较大的电导率(> 3×10 6 s m-1),使用了LMS,通常嵌入有机硅载体中,作为伸展的电导导体,以携带电力和信息或传输器具有多个功能。[5-10]由于其综合流变性,弹性地下的LMS尚未被广泛用于可靠,高性能,微型电路,这是由于开发与基于晶相的微技术相兼容的构图技术的挑战。[11] LMS在暴露于空气时形成薄(≈1–3 nm厚),表面固体氧化物皮肤。[12–14]氧化物平衡LMS的高表面张力并允许大多数表面润湿。这种现象是阻止当今LM电子技术的大型工业规模整合的主要阻碍因素之一。已经开发了几种技术来克服LM膜导体的生产性限制。[11,15,16]在一种方法中,LM图案是通过破裂氧化物皮肤,形成所需形状并通过氧化物皮肤再生而稳定的。3D和转移印刷技术依赖于这种氧化物皮肤稳定化来证明具有微观分辨率的痕迹。也证明了基于激光消融的类似方法,用于制造可扩展和高分辨率的LM网格。[17–20]但是,这种方法尚未被证明与大区块(> cm 2)电路的兼容,或者不能对LM Morphology提供足够的控制,因此无法保证高可扩展性(> 30%)。[21]激光微加工可以使高分子LM导体跟踪到4 µm线宽,但这种“串行”技术与大金属化密度绘制不相容。在另一种方法中,氧化物皮肤的生长要么通过真空处理下的加工或化学去除以允许在粘附层上润湿LM以增加与基材的亲和力。通过在金属润湿层上选择性电镀LMS来形成可拉伸(> 100%伸长)和狭窄(5 µm)图案的图案。[22]但是,大区域上的高分辨率电路尚未实现。
a 大连理工大学工业装备结构分析、优化及 CAE 软件国家重点实验室,大连 116024,中国 b 大连理工大学工程力学系,大连 116024,中国 c 大连理工大学 DUT-BSU 联合学院,大连 116024,中国 d 莱斯大学机械工程系,德克萨斯州休斯顿 77005,美国 e 西北大学材料科学与工程系,伊利诺伊州埃文斯顿 60208,美国 f 西北大学 Querrey Simpson 生物电子研究所,伊利诺伊州埃文斯顿 60208,美国 g 西北大学机械工程系,伊利诺伊州埃文斯顿 60208,美国 h 西北大学土木与环境工程系,伊利诺伊州埃文斯顿 60208,美国 i 西北大学生物医学工程系,伊利诺伊州埃文斯顿,美国j 美国伊利诺伊州芝加哥西北大学范伯格医学院神经外科系
摘要:高纵横比聚合物材料广泛应用于从服装等日常材料到工业和医疗领域的专用设备等各种应用领域。传统的制造方法,如挤压和模塑,在整合各种材料和实现复杂几何形状方面面临挑战。此外,这些方法在提供低成本和快速原型设计方面的能力有限,而这对于研发过程至关重要。在这项工作中,我们研究了使用市售的 3D 打印机来制造纤维预制件,然后将其热拉成纤维。通过优化 3D 打印参数,我们成功制造了直径小至 200 µm 且形状复杂、特征精确到几微米的纤维。我们通过从各种材料中制造纤维(例如具有不同刚度的纤维和具有磁性的纤维)证明了这种方法的多功能性,这有利于开发肌腱驱动和磁驱动的机器人纤维。此外,通过设计新颖的预制件几何形状,我们生产了锥形纤维和具有互锁机制的纤维,也适用于医疗可控导管应用。这些进步凸显了这种方法的可扩展性和多功能性,为生产用于各种应用的高精度聚合物纤维提供了一个强大的平台。关键词:增材制造;3D 打印;预制件制造;热拉伸;多材料纤维;功能纤维;纤维致动器
摘要 250 ℃低温时效处理可显著提高电子束定向能量沉积 (EB-DED) 制备的 NiTi 合金的拉伸超弹性能。然而由于晶粒尺寸较大,需要很长的时效时间 (长达 200 h) 才能获得优异的拉伸超弹性能。为了加速时效进程,在时效处理之前通过人工热循环处理引入高密度位错(EB-DED 处理的 NiTi 合金中原始位错含量很低),这将促使后续在低温时效处理过程中均匀析出纳米级 Ni 4 Ti 3 颗粒。其相变行为始终保持稳定的两阶段马氏体相变。在 6% 应变循环拉伸试验下,经过热循环处理后,24 h 时效试样经过 10 次循环后的回复率仍在 90% 以上,与未进行热循环处理时效 200 h 的试样性能相当,时效效率大幅提高。
先进材料是液氢动力飞机储存和分配技术发展的基础。然而,为了证明材料保证,必须有适合用途的测试和表征方法,能够在代表性条件下准确测量所需的材料特性。这些需要包括此类应用中使用的材料的机械、热和传输特性。在机械测试方面,将负载引入样品的方法至关重要。在这项工作中,开发了一种新型夹持系统,解决了传统楔形夹持中观察到的问题,从而允许在低温下对纤维复合材料进行拉伸测试。在易用性和功能方面,这些夹具表现良好,初步验证了在不同温度下(低至 77K)的性能,使用单一聚合物复合材料 (SPC) 系统。
R. Dong、Prof. S. Liu、Prof. X. Jiang 哈尔滨工业大学生命科学与技术学院 中国哈尔滨市南岗区益矿路 2 号 150001 电子邮件:shaoqinliu@hit.edu.cn; jiang@sustech.edu.cn 董荣军,杭聪,陈哲,刘晓玲,钟玲,齐建军,黄勇,蒋晓玲教授 南方科技大学生物医学工程系 中国广东省深圳市南山区学院路 1088 号 518055 王林博士,王林教授,陆英教授 中国科学院脑连接组与操控重点实验室,脑认知与脑疾病研究所 中国科学院深圳先进技术研究院 深港脑科学研究院-深圳基础研究中心 深圳 518055,中国 电子邮件:lp.wang@siat.ac.cn; luyi@siat.ac.cn
* 通讯作者 三维 (3D) 培养方法的进步已导致类器官的产生,这些类器官重现了人类神经系统各个领域的细胞和生理特征。尽管已经开发出微电极用于与神经组织建立长期电生理接口,但对微电极和自由漂浮类器官之间长期接口的研究仍然有限。在本研究中,我们报告了一种可拉伸的柔软网状电极系统,该系统在 3D 类器官中建立了与人类神经元的密切体外电接口。我们的网状电极由基于聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 的导电水凝胶电极阵列和弹性体聚(苯乙烯-乙烯-丁二烯-苯乙烯) (SEBS) 作为基材和封装材料构成。这种网状电极可以在 50% 压缩应变和 50% 拉伸应变下的缓冲溶液中保持稳定的电化学阻抗。我们已成功在这种聚合物网上培养了多能干细胞衍生的人类皮质类器官 (hCO) 超过 3 个月,并证明类器官很容易与网状物整合。通过同时进行刺激和钙成像,我们表明通过网状电刺激可以引发强度依赖性钙信号,与双极立体电极的刺激相当。该平台可用作监测和调节神经精神疾病体外模型电活动的工具。简介网状电极是一种新兴的脑组织慢性电生理接口平台 1,2 。与由硅等硬质材料制成的传统多电极阵列或柄探针不同,网状电极由柔性导电互连线和绝缘聚合物材料封装的电极组成。由于多种原因,网状电极已被证明能够实现稳定的长期接口。首先是它们的弯曲刚度低:通过具有薄层,它们可能更容易与神经组织贴合,从而最大程度地减少异物相互作用 3 。其次,网状电极排除的体积远小于其他技术(例如实心电极插入物)。网状电极可以做得小于 1 微米,并且已被证明在注入液体溶液后会膨胀和扭开 4,5 。网状电极的一个潜在应用领域是刺激和监测 3D 神经类器官中电活动的出现。神经类器官最初是人类诱导多能干细胞 (hiPSC) 的 3D 聚集体。随着时间的推移,hiPSC 衍生的分化细胞自组织成 3D 结构,重现发育神经轴域的某些方面 6 。这些类器官或它们的组合形成组装体,可用于研究早期