摘要:丝网印刷等高通量生产方法可以将可拉伸电子产品从实验室带入市场。由于其良好的性价比,大多数用于丝网印刷的可拉伸导体油墨都是基于银纳米颗粒或薄片的,但银容易失去光泽和腐蚀,从而限制了此类导体的稳定性。在这里,我们报告了一种经济高效且可扩展的方法来解决这个问题,即开发基于银薄片的丝网印刷油墨,银薄片上涂有一层薄薄的金。印刷的可拉伸 AgAu 导体的电导率达到 8500 S cm − 1,在高达 250% 的应变下仍保持导电性,表现出优异的腐蚀和失去光泽稳定性,并用于演示可穿戴 LED 和 NFC 电路。所报告的方法对智能服装很有吸引力,因为这种设备在各种环境中都有望长期发挥作用。关键词:可拉伸电子产品、软电子产品、印刷电子产品、金、银薄片、腐蚀、稳定性、NFC ■ 介绍
自愿运动在执行前需要做好准备。人们已在整个中枢神经系统中观察到了准备活动,最近在人类周围神经系统(即肌梭)的一级神经元中也发现了准备活动。感觉器官中出现的变化表明,拉伸反射增益的独立调节可能是运动准备的重要组成部分。本研究的目的是进一步研究人类受试者优势上肢的短延迟拉伸反射反应 (SLR) 和长延迟拉伸反射反应 (LLR) 的准备调节。具体来说,我们研究了不同的目标参数(目标距离和方向)如何影响目标导向伸手的背景下拉伸反射增益的准备调节,以及任何此类调节是否取决于准备持续时间和背景负荷的方向。我们发现目标距离只会产生很小的反射增益变化。相比之下,SLR 和 LLR 增益都根据目标方向受到强烈调节,从而促进即将到来的自愿运动。当准备延迟足够长(> 250 毫秒)且同向肌肉未负重时,这种以目标为导向的 SLR 和 LLR 增益调节会出现或增强 [即,当背景负荷首次施加在同向肌肉动作方向(辅助负荷)时]。结果进一步支持了伸手准备中相对缓慢进化的过程,该过程可能通过独立控制肌腱运动神经元来调节反射性肌肉僵硬。这种控制可以增强自愿的目标导向运动,并在同向肌肉未负重时被触发或增强。
黄坤1 吴玉峰1 刘俊臣1 常耿2 潘旭超2,* 翁小迪3,* 王永刚1 雷明1,* 摘要 随着科技的发展和生活水平的提高,基于水凝胶的应变传感器受到了越来越多的关注。然而,制造具有理想机械和压阻性能的水凝胶应变传感器仍然具有挑战性。本文提出了一种双层柔性水凝胶传感器,该传感器由碳纳米管(CNT)和聚乙烯醇(PVA)制成,具有高达 415% 应变的高拉伸性和 92% 应变的超压缩性,以及相当大的电导率(1.11 S m -1 )。水凝胶传感器在整个检测范围内表现出很好的线性度、出色的耐用性和在 1000 次加载-卸载循环中稳定的相对电阻变化(∆𝑅𝑅 0 ⁄)。这些优异的性能归功于一种新的双层结构设计,即在纯坚固的 PVA 基底上沉积一层薄薄的 CNTs/PVA 导电传感器层。结合快速响应时间(拉伸时为 508 毫秒,压缩时为 139 毫秒)和生物相容性,这种新型传感器具有作为可穿戴传感器的巨大潜力,可用于表皮传感应用,例如检测人体关节的弯曲、吞咽、呼吸等。此外,CNTs/PVA 水凝胶可以利用其内部离子来操作电子屏幕,甚至可以使用机械信号来调制光信号。所有这些都证明了 CNTs/PVA 水凝胶作为应变传感器的巨大优势。
1 延世大学电气电子工程学院,首尔 03722,韩国 2 韩国科学技术研究院生物医学研究所仿生学中心,首尔 02792,韩国 3 成均馆大学电气与计算机工程系,水原 16419,韩国 4 韩国科学技术大学 KIST 学院生物医学科学与技术系,首尔 02792,韩国 5 成均馆大学智能精准医疗融合系,水原 16419,韩国 6 成均馆大学生物医学工程系,水原 16419,韩国 7 成均馆大学超智能工程系,水原 16419,韩国 * 通讯地址:mikyungshin@g.skku.edu (硕士);daniel3600@g.skku.edu(博士)
摘要 裂纹控制策略已被证明对于增强基于金属薄膜的可拉伸导体的拉伸能力非常有用。然而,现有的策略往往存在制备复杂和有效方向预定的缺点。在这里,我们提出了一种裂纹补偿策略,用于制备具有高拉伸性的导体,即使用液态金属微粒 (LMMPs) 嵌入聚二甲基硅氧烷 (PDMS) 作为基底,在其表面溅射一层薄薄的金 (Au) 薄膜。LMMPs 在拉伸时可以拉长以连接破裂的金膜,这可以形成导电的“岛-隧道” (IT) 结构以补偿裂纹并保持导电性。通过使用可拉伸导体作为电极记录人体肱桡肌表面肌电图并监测正常和癫痫状态下大鼠的皮层电图信号,证明了可拉伸导体的高性能。所开发的策略显示出为柔性电子产品的制造提供新视角的潜力。
图 1. 2 股 CNT 纱线表面和横截面:(a) 长度范围为 150-500 米、线密度为 7-10 tex 的 CNT 纱线卷;(b) 不规则纱线横截面;(c) 纵向
本文由 TigerPrints 汽车工程部门免费提供给您,供您免费访问。它已被 TigerPrints 授权管理员接受并纳入出版物。如需更多信息,请联系 kokeefe@clemson.edu。
本文研究了两种不同的沉积策略(振荡和平行道次)对丝材+电弧增材制造的 Ti-6Al-4V 合金在成品状态下的拉伸和高周疲劳性能的影响。在振荡构建中,等离子炬和送丝器在壁厚方向上连续振荡。相反,在平行道次构建中,沿壁长相同方向连续沉积四个单层。测试样本相对于沉积层以水平和垂直方向制造。与平行道次构建相比,振荡构建由于其较粗的转变微观结构而具有较低的静态强度。然而,伸长率值相似。柱状初生 β 晶粒的存在导致各向异性的伸长率值。载荷轴平行于初生 β 晶粒的垂直样品的伸长率比水平样品高 40%。疲劳强度与其锻造对应物相当,并且高于典型的铸造材料。在 10 7 次循环中,振荡构建垂直样品和平行道次构建在两个方向上的疲劳强度都达到了 600 MPa。只有振荡构建水平样品的疲劳强度较低,为 500 MPa。断口分析表明,大多数样品(约 70%)的裂纹源于孔隙,约 20% 的样品的裂纹源于微观结构特征,其余样品没有失效(在 10 7 次循环时出现跳动)。
新建筑物/重大翻新•建筑能源代码:基本代码,拉伸代码,可再生能源代码,零代码等等•碳中性分区和条例•零排放/电源条例•清洁供暖标准•设备标准•设备标准
电子产品。 [1–3] 然而,电子设备数量的迅速增加引发了严重的环境问题,因为通过填埋不当处理科技废物、使用有毒物质以及大量的碳足迹对自然构成了巨大威胁。 [4] 由于回收利用往往不切实际且成本高昂,如果能够缩小与传统电子产品的性能差距,新兴的可降解电子产品将提供一种可持续的解决方案。 [5] 对于可拉伸系统,这对所用材料的机械性能提出了严格的要求。包括传感器在内的保形电子皮肤完全是柔软的,但为了达到高度的不可感知性,需要可拉伸的设备。 拉伸性使其对使用过程中的表面和变形的适应性更高。 [6] 此类设备的可生物降解版本需要开发与其保形性和可降解性相匹配的电源。 [7] 据报道,完全可降解超级电容器能够为手表供电,且具有高面积电容,但它们的低能量密度和负载下工作电压线性下降使得它们不适合耗电的电子应用。 [8,9] 另一方面,可拉伸电池提供稳定的工作电压和更长运行时间所需的高能量密度。 到目前为止,这些设备主要利用不可降解和有毒材料的优势。 [10–12] 虽然完全可降解软电池在功率输出方面有所改进,但它们还无法与不可降解设计相媲美,而且它们的可拉伸实现仍处于起步阶段。 [13–15] 刚性可降解电源通常利用镁、铁或钼等金属的高理论能量密度,但实现相同的可拉伸版本仍然是一个挑战。 [16,17] 此类金属通常几乎不表现出超出一定程度的不可逆延展性的固有拉伸性。这可以通过各种后处理方法(例如薄膜屈曲、刚性岛设计)来解决,但是,这些方法需要简单易行,并且不能过度损害性能。[18] 预拉伸基板上的电极膜屈曲虽然提供了可逆拉伸性,但迄今为止仅报道了不可降解电极材料,如聚二甲基硅氧烷-碳纳米管复合材料或金属化聚对苯二甲酸乙二醇酯 (PET) 箔。[19,20] 此类