吲哚-3-乙酰胺 (IAM) 是某些植物病原菌中第一个被证实的生长素生物合成中间体。外源施用 IAM 或通过过表达拟南芥中的细菌 iaaM 基因产生 IAM 会导致生长素过量产生表型。然而,植物是否使用 IAM 作为生长素生物合成的关键前体仍不确定。在此,我们报告了从正向遗传筛选中分离拟南芥中的 IAM 水解酶 1 (IAMH1) 基因,该筛选用于显示正常生长素敏感性的 IAM 不敏感突变体。IAMH1 有一个相近的同源物,名为 IAMH2,位于拟南芥 IV 染色体上 IAMH1 的旁边。我们使用我们的 CRISPR/Cas9 基因编辑技术生成了 iamh1 iamh2 双突变体。我们发现,IAMH 基因的破坏使拟南芥植物对 IAM 处理产生抗性,同时也抑制了 iaaM 过表达表型,这表明 IAMH1 和 IAMH2 是拟南芥中将 IAM 转化为 IAA 的主要酶。iamh 双突变体没有表现出明显的发育缺陷,这表明 IAM 在正常生长条件下在生长素生物合成中不起主要作用。我们的研究结果为阐明 IAM 在生长素生物合成和植物发育中的作用奠定了坚实的基础。
脱落酸 (ABA) 对种子休眠的控制已得到广泛研究,但其潜在机制尚未完全了解。本文,我们报告了拟南芥 (Arabidopsis thaliana) 中两种与 ABA 相关的种子休眠调节剂的特征:ODR1(用于逆转 rdo5),水稻 (Oryza sativa) 种子休眠 4 (Sdr4) 的直系同源物,以及碱性螺旋-环-螺旋转录因子 bHLH57。ODR1 的转录水平直接受到转录因子 ABA INSENSITIVE3 (ABI3) 的抑制,它通过影响 ABA 生物合成和 ABA 信号传导来负向调节种子休眠。相比之下,bHLH57 通过诱导基因 9-CIS-EPOXYCAROTENOID DIOXYGENASE6 ( NCED6 ) 和 NCED9 的表达来正向调节种子休眠,这两个基因编码 ABA 生物合成酶,从而导致更高的 ABA 水平。ODR1 与 bHLH57 相互作用并抑制 bHLH57 调节的 NCED6 和 NCED9 在细胞核中的表达。bhlh57 功能丧失等位基因可以部分抵消 odr1 突变体中增强的 NCED6 和 NCED9 表达,因此可以挽救它们相关的超休眠表型。因此,我们确定了一个新颖的 ABI3-ODR1-bHLH57-NCED6/9 网络,该网络为了解 ABA 生物合成和信号传导对种子休眠的调节提供了见解。
成簇的规律间隔短回文重复序列 (CRISPR) - CRISPR 相关蛋白 (Cas) 技术已应用于植物育种,主要用于改良单个或多个性状的基因 1 – 4 。本文我们表明,这项技术还可用于重组植物染色体。利用来自金黄色葡萄球菌 5 的 Cas9 核酸酶,我们能够在拟南芥中诱导异源染色体之间 Mbp 范围内的相互易位。值得注意的是,在没有经典的非同源末端连接途径的情况下,易位频率大约高出五倍。利用 Cas9 核酸酶的卵细胞特异性表达和连续的批量筛选,我们能够分离可遗传事件并建立易位纯合的品系,单个品系的频率高达 2.5%。通过分子和细胞学分析,我们证实了在拟南芥 1 号和 2 号染色体之间以及 1 号和 5 号染色体之间获得的染色体臂交换是保守的和相互的。诱导染色体易位可以有针对性地模拟基因组进化或染色体修改,固定或打破不同染色体上性状之间的遗传连锁。植物基因组的受控重组有可能改变植物育种。鉴于养活快速增长的人口的挑战以及气候变化对农业的影响,对新作物品种的需求日益增加。随着传统育种已达到极限,使用基因组编辑工具对作物进行理想性状改造正成为主要关注点 6 。应用 CRISPR-Cas 系统定向诱导位点特异性双链断裂 (DSB) 使得基因编辑既可用于植物基础研究,也可用于农业性状的产生和改良 7 。在包括植物在内的多细胞真核生物中,DSB 的修复主要由两种途径介导,非同源末端连接 (NHEJ) 和同源重组 8 。通过易错的 NHEJ 进行的修复通常与断裂位点处的序列信息丢失有关,而同源重组主要导致无错修复 9 。在植物中,NHEJ 是体细胞组织中普遍的修复途径。NHEJ 可进一步细分为经典 NHEJ (cNHEJ) 和替代 NHEJ (aNHEJ) 途径 10 。在 cNHEJ 的情况下,断端直接重新连接,有时会导致断裂位点处的小插入或缺失 (indel)。aNHEJ 利用靠近断裂位点的微同源性并依赖于聚合酶 theta,导致与插入部分相关的微同源性之间的序列信息缺失 11,12 。一次诱导多个 DSB 可以通过 NHEJ 将不相关的断裂末端连接起来,从而导致基因组中复杂的重排。
农杆菌转移 DNA (T-DNA) 是一种有效的植物诱变剂,已用于在拟南芥中创建序列索引的 T-DNA 插入系,作为研究基因功能的工具。创建 T-DNA 插入系需要一种可靠的方法来定位基因组中的插入位点。在本方案中,我们描述了一种接头连接介导的 PCR 方法,我们已使用该方法筛选突变体文库并识别了超过 150,000 个 T-DNA 插入突变体;该方法还可用于绘制单个突变体的图谱。该过程包括三个步骤:限制性酶介导的接头与基因组 DNA 的连接;使用针对接头和 T-DNA 的特异性引物对 T-DNA/基因组 DNA 连接处进行 PCR 扩增;对 T-DNA/基因组连接处进行测序以便绘制到参考基因组。在大多数情况下,测序的基因组区域延伸到 T-DNA 边界,从而可以识别插入物的准确位置。整个过程需要2周时间才能完成。