番茄 ( Solanum lycopersicum ) 是一种全球性种植的作物,具有巨大的经济价值。外果皮决定了番茄果实的外观,并在收获前和收获后保护其免受各种生物和非生物挑战。然而,目前还没有番茄外果皮特异性启动子,这阻碍了基于外果皮的基因工程。在这里,我们通过 RNA 测序和逆转录-定量 PCR 分析发现番茄基因 SlPR10 ( PATHOGENESIS RELATED 10 ) 在外果皮中大量表达。由 2087-bp SlPR10 启动子 ( pSlPR10 ) 表达的荧光报告基因主要在 Ailsa Craig 和 Micro-Tom 品种的转基因番茄植株的外果皮中检测到。该启动子进一步用于番茄中 SlANT1 和 SlMYB31 的转基因表达,它们分别是花青素和角质层蜡质生物合成的主要调节因子。pSlPR10 驱动的 SlANT1 表达导致花青素在外果皮中积累,赋予果实抗灰霉病和延长保质期,而 SlMYB31 表达导致果皮蜡质增厚,延缓水分流失并延长果实保质期。有趣的是,pSlPR10 和另外两个较弱的番茄外果皮优先启动子在转基因拟南芥 (Arabidopsis thaliana) 植物的子房中表现出一致的表达特异性,这不仅为番茄外果皮和拟南芥子房之间的进化同源性提供了线索,而且为研究拟南芥子房生物学提供了有用的启动子。总的来说,这项研究报告了一种理想的启动子,能够在番茄外果皮和拟南芥雌蕊中实现靶基因表达,并证明了其在番茄果实品质遗传改良中的实用性。
通用应激蛋白(USP)主要参与细胞对生物和非生物胁迫的应答,在植物的生长发育以及对逆境的应激反应中起着重要作用。在拟南芥、玉米和水稻中分别鉴定出23、26和26个USP基因。根据USP基因的理化性质,USP Ⅰ类蛋白质被鉴定为具有高稳定性的亲水性蛋白质。基于系统发育分析,USP基因家族分为6组,USP Ⅲ和USP Ⅴ表现出更多的多样性。此外,同一亚组的成员具有相近的内含子/外显子数量和共同的保守结构域,表明进化关系较近。基序分析结果显示USP基因间具有较高的保守性。染色体分布表明USP基因可能通过片段重复在拟南芥、玉米和水稻中发生了基因扩增。大部分的Ka/Ks值小于1,说明USP基因在拟南芥、玉米和水稻中经历了纯化选择。表达谱分析表明USP基因在水稻中主要响应干旱胁迫,在玉米中主要响应温度和干旱胁迫,在拟南芥中主要响应低温胁迫。基因共线性分析可以揭示基因间的相关性,有助于后续的深入研究。本研究为理解USP基因在单子叶植物和双子叶植物中的进化提供了新的思路,为更好地理解USP基因家族的生物学功能奠定了基础,可用于葫芦科育种相关项目。
在本研究中,我们描述了敲除标记基因 MAR1 的建立,用于在组织培养中选择 CRISPR/Cas9 编辑的拟南芥幼苗和番茄外植体。MAR1 编码一种位于线粒体和叶绿体中并参与铁稳态的转运蛋白。它还会随机将氨基糖苷类抗生素转运到这些细胞器中,而该基因的缺陷会导致植物对这些化合物不敏感。在这里,我们展示了由 CRISPR 系统诱导的 MAR1 突变使拟南芥植物和番茄组织具有卡那霉素抗性。MAR1 在多种植物物种中都是单拷贝的,相应的蛋白质形成一个独特的系统发育进化枝,从而可以轻松识别不同植物中的 MAR1 直系同源物。我们证明,在多重方法中,通过由 MAR1 突变介导的 CRISPR/Cas9 诱导的卡那霉素抗性来选择拟南芥幼苗,观察到第二个靶基因突变的频率高于仅因存在转基因而选择的对照群体。这种所谓的共同选择以前从未在植物中发生过。该技术可用于选择经过编辑的植物,如果编辑事件很少发生,这可能特别有用。
农杆菌转移 DNA (T-DNA) 是一种有效的植物诱变剂,已用于在拟南芥中创建序列索引的 T-DNA 插入系,作为研究基因功能的工具。创建 T-DNA 插入系需要一种可靠的方法来定位基因组中的插入位点。在本方案中,我们描述了一种接头连接介导的 PCR 方法,我们已使用该方法筛选突变体文库并识别了超过 150,000 个 T-DNA 插入突变体;该方法还可用于绘制单个突变体的图谱。该过程包括三个步骤:限制性酶介导的接头与基因组 DNA 的连接;使用针对接头和 T-DNA 的特异性引物对 T-DNA/基因组 DNA 连接处进行 PCR 扩增;对 T-DNA/基因组连接处进行测序以便绘制到参考基因组。在大多数情况下,测序的基因组区域延伸到 T-DNA 边界,从而可以识别插入物的准确位置。整个过程需要2周时间才能完成。
1 食品科学研究所 (CIAL, CSIC-UAM),Nicolás Cabrera 9, 28049 马德里,西班牙; samuel.paterson@csic.es (SP); martamaj11@gmail.com(毫米); mafl@if.csic.es (M. Á .dlF) 2 微生物和血管生物学实验室,圣卡洛斯临床医院-圣卡洛斯健康研究所(IdISSC),教授。 Martín Largos,s/n,28040马德里,西班牙; mgomezgarre@salud.madrid.org(总干事); a.ortega.hernandez@hotmail.com(AO-H.); silsangon@outlook.es (SS-G.) 3 心血管疾病生物医学研究网络中心(CIBERCV),Monforte de Lemos 3-5,28029 马德里,西班牙 4 马德里康普顿斯大学(UCM)医学院生理学系,Plaza Ramírez Cajal s/n,28040 马德里,西班牙 * 通讯地址:pgcortes@csic.es -C.); b.hernandez@csic.es (BH-L.)
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否做了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可中,除非资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativeco mmons.org/publicdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者提供了预印本(未经同行评审的认证)提供的,他已授予Biorxiv的许可证,以在2025年2月8日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.07.636860 doi:Biorxiv Preprint
图 8 LHY1 和 bHLH28 在 SNC1 表达调控中的作用。(a)来自 DAP-seq 数据库的 SNC1 基因座中两个转录因子 LHY1 和 bHLH28 的结合。这是从浏览器图像中重新绘制的。结合用彩色块表示,高度代表检测到的结合水平。(b)野生型或 bon1 中突变体 bhlh28 和 lhy1 的生长表型。植物在 22°C 下 16 小时/8 小时光照下生长。(c)通过定量实时聚合酶链反应 (qRT-PCR) 测定 bhlh28 和 lhy1 单突变体和双突变体与 bon1 的相对 SNC1 表达。肌动蛋白被用作参考基因,并将表达水平与 Col-0 进行比较。显示的是三次生物学重复的平均值,误差线表示标准差。不同字母表示基因型之间的统计学显著差异(p < 0.05,学生 t 检验)。(d)LHY1-GFP 和 bHLH28-GFP 与 SNC1 启动子区的染色质免疫沉淀 (ChIP)-qPCR 分析。分别在“A”位点和“B”位点(如 a 所示)检测到 LHY1-GFP 和 bHLH28-GFP 的结合。显示了两个独立生物学重复的数据。“N”位点(如 a 所示)是 SNC1 基因体上的一个区域,在 DAP-seq 数据库中未检测到 LHY1 或 bHLH28 的结合信号。“GFP”是用抗 GFP 抗体孵育的样品,“NoAb”是不含抗 GFP 抗体的样品。不同字母表示通过单因素方差分析(ANOVA)得出的基因型间统计学差异具有显著性(p < 0.05)[彩色图可在 wileyonlinelibrary.com 上查看]
非致病细菌可以通过动员和供应养分,保护病原体并减轻非生物胁迫来实质性地促进植物健康。但是,全基因组关联研究的数量报告了对受益微生物群体各个成员的遗传结构的遗传结构。在这项研究中,我们在条件下建立了一项全基因组的关联研究,以估计162个拟南芥的162次植物变异水平和潜在的遗传结构,该拟南芥的加入来自法国西南部的54个自然种群,响应于法国西南部,响应于13种二种菌株的二种菌株,这些菌株与较丰富的非植物构图相同,构成了叶子的隔离,并构成了叶子的隔离,并构成了叶子的分离。 地区。使用高通量表型方法来评分与营养生长相关的特征,在这些物种和菌株
伪酸病毒(PRV)属于疱疹病毒亚家族A,其中还包括水痘病毒。PRV是伪造(PR)的病因,通常被称为Aujeszky氏病(1)。PRV具有感染各种动物物种的能力,但只有猪作为该病毒的储液宿主(2-7)。PRV感染后,猪会根据感染时的年龄表现出不同的临床症状。新生小猪主要表现出神经系统症状并具有较高的死亡率,而感染的成年母猪表现出生殖和呼吸系统疾病(8-10)。自2011年以来,在整个中国的多个猪农场都有PRV的复兴。这次爆发的主要特征是堕胎,死产和仔猪死亡率增加(11)。这种复兴可以归因于PRV变体的出现,例如HN1201,TJ菌株和SDYC-2014(12-14)。多项研究表明,Bartha-K61缺失应变疫苗在提供对这些变体的全面保护方面是不可能的(13,15)。尽管通过许多国家通过疫苗接种成功控制或消除了伪造(PR),但中国猪中的流行仍然普遍(16)。尽管PR Bartha-K61缺乏疫苗进行了免疫,但仍发生了许多PRV爆发(13、17-21)。在2018年,中国发生了非洲猪的发烧,这对该国的猪农业产生了重大影响。Zhao等。 这可以归因于增强的生物安全管理实践。Zhao等。这可以归因于增强的生物安全管理实践。这导致了牛群分布,农场生物安全水平以及猪农业行业中的牛群循环策略的显着变化。发现,与爆发前采样的猪爆发后,ASF爆发后进行采样的PRV感染可能性较低(22)。结果,PR的患病率已经受到影响(23,24)。有关于2021年之前中国PRV血清流行的报告,以及相关因素和时空分析,没有2022年的相关数据。因此,在这项研究中,2022年在中国收集了超过160,000种血清样品,其目的是分析伪标记的当前患病率并探索时空模式。此外,对PRV感染进行时空分析可以帮助识别具有较高PRV患病率的簇并了解PRV感染变异的趋势。此信息可以帮助决策者设计中国未来PRV控制的更精确和成本效率的干预政策。