摘要:微生物组在塑造宿主表型中的作用已成为一个关键的研究领域,对生态,进化和宿主健康具有影响。复杂而动态的相互作用涉及植物及其多样化的根际微生物群落受到许多因素的影响,包括但不限于土壤类型,环境和植物基因型。了解这些因素对微生物社区大会的影响是产生特定于植物的宿主特定和强大的好处的关键,但它仍然具有挑战性。在这里,我们对八代拟南芥l和cvi进行了人工生态系统选择实验,以选择与宿主的较高或更低生物量相关的土壤微生物。这导致了由于随机环境变化,植物基因型和生物量选择压力之间复杂的相互作用所塑造的不同微生物群落。在实验的初始阶段,基因型和生物量选择处理具有适中但显着的影响。随着时间的流逝,植物基因型和生物量处理的影响更多,解释了微生物群落组成的约40%。此外,在选择高生物量的选择下,观察到在选择中,观察到在选择中,观察到在选择中,观察到在选择中,观察到了植物生长促进根细菌的基因型特异性关联,labraceae和l er和rhizobiaceae与CVI的基因型相关性。
饮食蛋白缺乏症是全球最严重的健康问题之一;优化植物性食品蛋白质生产率的能力对世界健康和可持续性产生了极大的影响。作物工厂必须整合来自环境的信号,并优先考虑在整个生长季节中可能单独/同时发生的压力的反应。压力反应会对植物的生长和质量特征(例如蛋白质和淀粉)产生不利影响。植物疾病每年造成主要损失作物的产量。拟南芥种类的拟南芥物种在拟南芥中与核因子y亚基C4(NF-YC4)结合拟南芥及其在作物中的同源物。 QQS或NF-YC4的过表达以碳水化合物为代价增加叶子和种子的蛋白质含量。过表达QQS或NF-YC4的突变体也显着提高了对植物病原体和害虫的耐药性。我们检测到了几个被预测的保守基序,该基序被稻米和大豆NF-YC4基因的启动子中的阻遏物约束。使用CRISPR/CAS9编辑大米和大豆NF-YC4基因的启动子,我们删除了具有阻遏物结合基序的启动子片段。这些缺失导致抑制剂结合减少,NF-YC4表达增加,蛋白质增加和碳水化合物降低。基因编辑的植物表现出高达48%的叶蛋白和15%的种子蛋白。此外,我们说明了通过靶向基因组缺失上调基因表达的一般方法。
CSIR-IIIM查mu的研究结果基于以前的研究,该研究探讨了其他物种中ABC转运蛋白的结构和功能,例如水稻[3]和拟南芥[4]。大米的研究强调了ABCI亚科的动态性质及其在盐应激反应中的潜在作用[3]。同样,拟南芥中ABC蛋白的综合清单提供了对该蛋白质家族多样性的基本理解[4]。一起,这些研究帮助绘制了ABC转运蛋白的进化模式及其在不同植物谱系中的功能作用。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
1 南洋理工大学生物科学学院,新加坡 637551,新加坡 2 南阿拉巴马大学生物系,阿拉巴马州莫比尔 36688,美国 3 墨尔本大学生物科学学院,维多利亚州帕克维尔 3010,澳大利亚 4 波鸿鲁尔大学生物与生物技术学院,德国波鸿 44810 5 南洋理工大学新加坡环境生命科学工程中心,新加坡 637551,新加坡 6 南方科技大学医学院,深圳市南山区 518055,中国 7 哥本哈根大学植物与环境科学系(PLEN),丹麦 1871 Frederiksberg C 8 哥本哈根大学哥本哈根植物科学中心,丹麦 1871 Frederiksberg C 9 上海交通大学-南京大学杂交水稻国家重点实验室代谢与发育科学联合国际研究实验室上海交通大学生命科学与技术学院阿德莱德农业与健康联合中心, 上海 200240
* 通讯作者:Ute.Kraemer@ruhr-uni-bochum.de † 现地址:John Innes Centre, Norwich, NR4 7UH, UK。‡ 现地址:Centro de Biotecnolog ıa y Geno´mica de Plantas (UPM-INIA), Universidad Polite´cnica de Madrid, Pozuelo de Alarco´n, 28223, Spain。§ 现地址:Faculty of Biology, University of Mu¨nster, 48149 Mu¨nster, Germany。AS、JQ、MS、MRB、RF 和 VW 进行了实验,AS、BP、MK、MSES、GC 和 UK 进行了计算或其他数据分析,AS 和 UK 设计了研究并撰写了手稿,JQ 和 BP 也参与了贡献,所有作者都编辑了手稿。根据作者须知 (https://academic.oup.com/plcell) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是:Ute Kra¨mer (Ute.Kraemer@ruhr-uni-bochum.de)。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
在本文中,将为使用电动汽车和光伏面板的智能房屋提供电源管理算法。结果将分别提供权力管理,消费者的电力成本以及消费者的可能性。其他研究重点是以下。在[1]中,根据预测的PV输出和电力消耗确定了电动汽车充电的最佳时间表。在[2]中,确定了从电网的PHEV,电池和进口功率之间的优先顺序,并将进口电网能量和PEV充电成本的总成本降至最低。在[3]中,确定了带有光伏(PV)面板,电池,PHEV,热载荷和电气负载的智能家居中的最佳电源管理[3]。在[4]中,支持网格并允许房屋的最佳操作(具有智能设备,PV,存储和电动汽车),因此总电源成本最低。在[5]中进行了使用热量和电力存储的社区储能的优化。在[6]中,确定了具有PHEV能量存储和PV阵列的智能房屋的随机能源管理,导致电动汽车的电力成本较低。电动汽车与PV之间的相互作用。在[8]中,对于具有供暖,通风和空调负荷的可持续智能房屋而言,可以将能源成本和热不适成本的总和最小化。在[10]中,为带电动汽车的商业系统中的峰值负载管理开发了一种算法。在[9]中,用于直接当前环境的无线PV驱动家庭能源管理系统的设计和实施允许远程监视电器的能源消耗和功率质量质量。在[11]中,研究了一种基于混合光伏电池和V2G的智能房屋的能源管理系统。在[12]杂交
摘要:III类WRKY转录因子在植物应对多种非生物胁迫和次生代谢中起着至关重要的作用,但WRKY66的进化和功能尚不清楚。本研究对WRKY66同源物进行追溯,发现其经历了基序的获得与丢失以及纯化选择。系统发育分析表明145个WRKY66基因可分为三个主要进化枝(A~C进化枝)。替代率检验表明WRKY66谱系与其他谱系有显著差异。序列分析显示WRKY66同源物具有保守的WRKY和C2HC基序,且平均丰度中关键氨基酸残基的比例更高。AtWRKY66是一个核蛋白,可受盐和脱落酸诱导的转录激活因子。同时,在盐胁迫和脱落酸处理下,由成簇的、规律间隔的、短回文重复序列/CRISPR-相关9(CRISPR/Cas9)系统产生的Atwrky66敲低植物的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性以及种子发芽率均低于野生型(WT)植物,但相对电解质渗漏(REL)较高,表明敲低植物对盐胁迫和脱落酸处理的敏感性增加。此外,RNA-seq和qRT-PCR分析表明,敲低植物中参与应激反应的脱落酸介导的信号通路中的几个调控基因受到显著调控,表现为基因表达更温和。因此,AtWRKY66可能在盐胁迫反应中起正调控作用,可能参与脱落酸介导的信号通路。