印度理工学院鲁尔基分校 系别:应用数学与科学计算系 科目代码:AMC-501 课程名称:应用优化技术 LTP:3-0-0 学分:3 学科领域:PCC 课程大纲:优化简介、凸集、凸函数、数学建模、线性规划:图解法、单纯形法、线性规划中的对偶性、灵敏度分析、对偶单纯形法、整数规划问题、混合整数规划问题、无约束优化 - 牛顿-拉夫逊法、拟牛顿法、共轭梯度法、最速下降法、约束优化 - 拉格朗日法、广义递减梯度法、罚函数法、多目标优化 - 多目标优化问题、帕累托前沿、支配和非支配解、经典多目标优化方法(如加权和方法、e-约束方法)。
本文重点研究短期梯级水力调度问题,特别是在竞争环境,即市场条件下。提出了一种非线性随机优化方法,将水力发电量作为每小时电力市场价格和水释放率的函数。为了解决基于土耳其梯级水力发电设施之一的案例研究,所提出的方法已成功应用于各种问题,计算时间可忽略不计,同时提供更高的利润。本文展示了应用基于拟牛顿法的模型可以实现的好处,该方法可以找到解决某种类型优化函数的零点或局部最大值和最小值,因为它可以更好地处理问题的不确定性、约束和复杂性。十年每小时水流入数据和电力市场价格被用作输入,并比较了级联和单一优化的结果。与每个水电站 (HPP) 的运行分别进行的比较研究表明,使用级联变体可获得 18% 的收入。
16MA607 数值方法与优化 4 - 0 - 0 - 4 方程和特征值问题的解:线性插值法、假位置法、牛顿法、不动点定理陈述、不动点迭代、高斯消元法解线性系统、高斯-约登法和迭代法、高斯-约登法求矩阵逆、幂法求矩阵特征值。常微分方程的初值问题:单步法、泰勒级数法、欧拉法和修正欧拉法、用于解一阶和二阶方程的四阶龙格-库塔法。多步法:Milne 和 Adam 的预测器和校正器方法。线性规划:公式化、图形和单纯形法、大 M 方法、两相法、对偶单纯形法、原始对偶问题。无约束一维优化技术:必要和充分条件。无限制搜索方法:斐波那契和黄金分割法、二次插值法、三次插值和直接根法。无约束 n 维优化技术:直接搜索法、随机搜索、模式搜索和 Rosen Brooch 的山丘声称法、下降法、最速下降法、共轭梯度法、拟牛顿法。约束优化技术:必要和充分条件、等式和不等式约束、Kuhn-Tucker 条件、梯度投影法、割平面法、罚函数法。动态规划、最优化原理、递归方程方法、最短路线应用、货物装载、分配和生产计划问题。教科书/参考文献:1.S. S. Rao,“能源优化理论与实践”,John Wiley and Sons,2009 年。2.Taha H. A.,“运筹学——导论”,第八版,Prentice Hall
用于凸优化的自适应近端梯度法 NeurIPS ,2024 16. K. Mishchenko、A. Defazio Prodigy:一种快速自适应的无参数学习器 ICML ,2024 15. A. Khaled、K. Mishchenko、C. Jin DoWG Unleashed:一种有效的通用无参数梯度下降法 NeurIPS ,2023 14. A. Defazio、K. Mishchenko 通过 D 自适应实现无学习率学习 ICML ,2023 杰出论文奖 13. B. Woodoworth、K. Mishchenko、F. Bach 两个损失胜过一个:使用更便宜的代理进行更快的优化 ICML ,2023 12. K. Mishchenko、F. Bach、M. Even、B. Woodworth 异步 SGD 在任意延迟 NeurIPS,2022 11. K. Mishchenko、G. Malinovsky、S. Stich、P. Richtárik ProxSkip:是的!局部梯度步骤可证明可加速通信!终于! ICML ,2022 10. K. Mishchenko、A. Khaled、P. Richtárik 近端和联合随机重新调整 ICML ,2022 9. K. Mishchenko、B. Wang、D. Kovalev、P. Richtárik IntSGD:随机梯度的自适应无浮点压缩 ICLR ,Spotlight,2022 8. K. Mishchenko、A. Khaled、P. Richtárik 随机重新调整:简单分析但带来巨大改进 NeurIPS ,2020 7. Y. Malitsky、K. Mishchenko 无下降的自适应梯度下降 ICML ,2020 6. K. Mishchenko、F. Hanzely、P. Richtárik 分布式优化中 99% 的 Worker-Master 通信是不需要的 UAI ,2020 5. K. Mishchenko, D. Kovalev, E. Shulgin, Y. Malitsky, P. Richtárik 重温随机超梯度 AISTATS,2020 4. A. Khaled, K. Mishchenko, P. Richtárik 相同和异构数据 AISTATS 上局部 SGD 的更严格理论,2020 3. S. Soori, K. Mishchenko, A. Mokhtari, M. Dehnavi, M. Gürbüzbalaban DAve-QN:具有局部超线性收敛率的分布式平均拟牛顿法 AISTATS,2020 2. F. Hanzely,K. Mishchenko,P. Richtárik SEGA:通过梯度草图 NeurIPS 减少方差,2018 1. K. Mishchenko,F. Iutzeler,J. Malick,M.-R。 Amini 一种用于分布式学习的延迟容忍近端梯度算法 ICML,2018