为了生成基因编辑的无转基因大豆植物,设计了多个 sgRNA(单向导 RNA),并将其用于靶向 GmNF-YC4-1(Glyma.06G169600)启动子中的不同区域。使用农杆菌介导的转化将 Cas9 和多达六个向导 RNA 表达盒引入稳定转化的大豆植物中。使用 PacBio DNA 序列分析检测了 GmNF-YC4 启动子中含有缺失的 T0 植物。使用 PCR 分析和 DNA 测序检查了由 T0 植物自花授粉产生的 T1、T2 和 T3 植物,以识别缺失纯合且未继承含有 T-DNA 的基因编辑机制的品系。通过定量 PCR 测定 T-DNA 的存在与否以确定拷贝数。已经(或将)使用至少六对 PCR 引物对在拷贝数测定中未显示 T-DNA 拷贝的大豆品系进行 T-DNA 存在与否的检查,以调查大豆基因组中是否存在 T-DNA 载体序列。如果发现基因组中存在 T-DNA 载体序列,则将大豆品系与未转化大豆进行杂交,并选择包含预期的 NF-YC4 启动子缺失且不包含任何 T-DNA 载体序列的后代。
综合基因组分析 (CGP):综合基因组分析是一种下一代测序方法,能够检测新的和已知的变异,包括所有类别的基因组改变(碱基替换、插入和缺失、拷贝数改变和重排)和基因组特征(如肿瘤突变负担 [TMB] 或血液 TMB、微卫星不稳定性和杂合性缺失),以提供预后、诊断和预测见解,为所有癌症类型的个体患者提供治疗决策信息。
MET 基因的额外拷贝数只是 MET 基因可能发生的一种异常变化。先前的研究表明,患有某些 MET 基因变化的患者可从使用阿米凡他单抗-vmjw 的治疗中获益。但需要更多研究才能知道该药物是否可以帮助控制具有额外 MET 拷贝的癌症。这项研究是一个了解阿米凡他单抗-vmjw 是否可以改善更多患者肺癌治疗的机会。
该试剂盒提供了引物/探针混合物,用于使用 qPCR 检测外源核酸模板(cDNA 合成后的 DNA 或 RNA 模板)。引物存在于 PCR 限制浓度,允许与目标序列引物进行多路复用。即使目标基因的拷贝数较低,对照模板的扩增也不会干扰目标基因的检测。有多种染料可供选择,允许使用不同的通道检测控制模板。必须选择与检测目标基因不同的荧光染料。
通过蒙特卡洛特征选择方法和重复增量剪枝以减少错误方法,将分类规则作为潜在的非侵入性生物标志物。刘哲等人对结直肠癌患者的等位基因特异性表达 (ASE) 进行了全基因组分析,系统地了解了 ASE 如何与肿瘤和正常组织有关。胡等人利用 RNA 测序数据通过生物信息学分析来识别和量化心房颤动 (AF) 中的环状 RNA,并通过竞争内源性 RNA 网络和蛋白质 - 蛋白质相互作用网络表征其潜在功能。石晓玲等人通过全外显子组测序筛选了一组完全性肺静脉异常连接病例和健康对照者的稀有拷贝数变异,提供了与罕见先天性出生缺陷相关的候选基因。吴等人对一个HSCR家系的7个成员进行了全外显子组测序,首次报道了导致可遗传的HSCR的RET移码变异p.Phe147del。谢志军等通过全外显子组测序,研究了一组无关的肺动脉闭锁患者和一组人群匹配的健康儿童对照队列中的罕见拷贝数变异(CNV),有助于阐明关键的疾病基因和新的发病机制见解。孟某等结合靶向测序和Hotspot3D计算方法,对中国非小细胞肺癌患者的驱动基因突变做了简要的研究报告。
摘要Rapeseed是全球重要性的作物,但有必要扩大可用于解决育种目标的遗传多样性。受基因组支持支持的辐射诱变有可能取代基因组敲除和拷贝数增加的基因组编辑,但是缺乏对放射治疗的分子结果的详细知识。为了解决这个问题,我们制作了一个基因组重新测序的1133 m 2一代菜籽植物的面板,并分析了大规模缺失,单核苷酸变体和小插入 - 影响基因开放式阅读框架的缺失变体。我们表明,高辐射剂量(2000 Gy)是耐受性的,γ辐射和快速中子辐射具有相似的影响,并且从某些植物的基因组中删除的片段被其兄弟姐妹遗传为其他副本,从而使基因剂量减少。与具有较大基因组的物种相关性,我们表明,也可以使用转录组重新测序来检测这些大规模影响。为了测试该方法的预测性改变油脂肪酸组成的效用,我们产生了bna.fae1的拷贝数减少和增加的线条,并确认了对灰烬酸含量的预期影响。我们检测并测试了预计将废除BNA.FAD2的21碱基缺失。a5,为此,我们确定了预测的种子油多不饱和脂肪酸含量的降低。我们对辐射诱变的分子作用的提高理解将是基因组学主导的方法,以更有效率地将新型遗传变异引入该作物的繁殖,并为预测其他作物提供了一个典范。
图1。T(14; 19)(Q11.2; Q13.3)在T8ML-1中的基因组特征。 (a)光谱核分型(天空)描绘了来自T8ML-1核型的G带,未加工和伪色彩的染色体图像,显示了多个PLE改变。 红色和绿色箭头分别表示DER(14)和DER(19)易位伙伴;白色箭头显示非参与者断点。 天空揭示了与持续存在的患者衍生的亚克隆一致的异质但稳定的克隆下结构。 (b)G频段显示了14Q11.2和19Q13.3的T(14; 19)的断点。 (c/d)14q11.2(c)和19q13.3(d)的Cytoscan图显示了基因组拷贝数图。 图插图显示了使用Tilepath克隆以及映射BAC(C)和Fosmid(D)克隆的映射数据的荧光原位杂交(FISH)。 请注意基于鱼图像的断点分配,描绘了14q11.2和19q13.3分别位于Tra@ dowr@下游增强子和下游短形式PVRL2的断点。 差异信号强度符合焦点扩增,如两个基因座的拷贝数图所示。 如前所述,进行了鱼类和基因组阵列。 使用HISKY系统(Applied Spectral Imaging,Edingen,Germany)捕获了细胞遗传学图像,该系统配置为AxioImager D1 Micro-Scope(Zeiss,Jena,Germany)。 如参考文献中所述,Siebert Lab友好地捐赠了克隆。 10,或从美国加利福尼亚州奥克兰市的BACPAC资源,儿童医院购买,并由Nick Translation用Dutp Fluors Dy495(绿色),DY590(RED)和DY547(黄色)(黄色)(黄色)购买。T(14; 19)(Q11.2; Q13.3)在T8ML-1中的基因组特征。(a)光谱核分型(天空)描绘了来自T8ML-1核型的G带,未加工和伪色彩的染色体图像,显示了多个PLE改变。红色和绿色箭头分别表示DER(14)和DER(19)易位伙伴;白色箭头显示非参与者断点。天空揭示了与持续存在的患者衍生的亚克隆一致的异质但稳定的克隆下结构。(b)G频段显示了14Q11.2和19Q13.3的T(14; 19)的断点。(c/d)14q11.2(c)和19q13.3(d)的Cytoscan图显示了基因组拷贝数图。图插图显示了使用Tilepath克隆以及映射BAC(C)和Fosmid(D)克隆的映射数据的荧光原位杂交(FISH)。请注意基于鱼图像的断点分配,描绘了14q11.2和19q13.3分别位于Tra@ dowr@下游增强子和下游短形式PVRL2的断点。差异信号强度符合焦点扩增,如两个基因座的拷贝数图所示。鱼类和基因组阵列。使用HISKY系统(Applied Spectral Imaging,Edingen,Germany)捕获了细胞遗传学图像,该系统配置为AxioImager D1 Micro-Scope(Zeiss,Jena,Germany)。如参考文献中所述,Siebert Lab友好地捐赠了克隆。10,或从美国加利福尼亚州奥克兰市的BACPAC资源,儿童医院购买,并由Nick Translation用Dutp Fluors Dy495(绿色),DY590(RED)和DY547(黄色)(黄色)(黄色)购买。基因组阵列数据由Cytoscan高密度基因组阵列(Affymetrix,Thermo Fischer,Darmstadt,Germany)提供。
花植物的线粒体基因组 (mitogenome) 由多条染色体组成。线粒体染色体内和染色体之间的重组可能产生称为异构体的多种 DNA 分子。由于不均匀的复制和同源重组,异构体的拷贝数和组成在单个植物内和单个植物之间可能是动态的。尽管如此,尽管它们具有功能重要性,但物种内线粒体基因组的保守水平仍未得到充分研究。个体发育变异是否会导致线粒体基因组组成的世代进化目前尚不清楚。在这里,我们表明,海草 Zostera marina 的线粒体基因组组成在大约 35 万年前分化的全球种群中是保守的。使用长读测序,我们表征了 Z. marina 线粒体基因组并推断出重组诱导配置的库。为了描述全球线粒体基因组结构并研究其进化,我们研究了从太平洋和大西洋的 16 个种群中取样的 Z. marina 分生区域的线粒体基因组。我们的研究结果显示,同工型相对拷贝数具有惊人的相似性,这表明尽管在个体发育过程中存在显著的变化,但远亲种群和植物种系中的线粒体基因组组成具有高度的保守性。我们的研究为在植物个体水平上对动态线粒体基因组的观察与长期线粒体进化之间提供了联系。
生产菌株的遗传稳定性和代谢稳健性是通过工业规模微生物发酵生产生物基产品的关键标准之一。本文在一种工业乙醇生产菌株酿酒酵母中探索了这些标准,该菌株能够通过染色体整合几个关键基因拷贝来共同发酵 D-木糖和 L-阿拉伯糖与葡萄糖,从而利用这些戊糖 (C5) 糖。在模拟工业环境中长期发酵的受控生物反应器中使用批量顺序培养,发现该菌株早在第 50 代及以后就表现出 D-木糖和 L-阿拉伯糖消耗的显著波动。这些波动似乎与在整个连续批量培养中出现的频率低于 1.5% 的少数低消耗 C5 糖克隆无关,这是由于编码 C5 糖同化酶的转基因拷贝数减少造成的。此外,富含低或高 RAD52 表达的亚群(其表达水平据报道与同源重组率成正比)未表现出 C5 糖同化缺陷,这表明其他机制可能是造成转基因拷贝数变异的原因。总体而言,这项研究强调了工业酵母中存在遗传和代谢不稳定性,尽管在我们的条件下这种不稳定性并不大,但在更恶劣的工业条件下可能会更加有害,从而导致生产性能下降。