示例答案:锡。锡(符号 Sn)是一种银白色金属,历史悠久。早在公元前 1500 年,它就在地中海文明中交易(基督教圣经旧约中多次提到它)。当时它的重要性在于它能够使铜变硬,变成青铜(含锡约 10% 的铜),青铜是青铜时代(公元前 1500 年 - 公元前 500 年)武器、工具和雕像的主要材料。如今,锡仍用于制造青铜、焊料和作为食品和饮料容器钢板(“镀锡板”)上的耐腐蚀涂层——对澳大利亚人来说,“tinnie” 就是一罐啤酒。平板玻璃是通过将熔融玻璃漂浮在液态锡床上(皮尔金顿工艺)制成的。玻璃上薄薄的锡化合物沉积物可形成透明的导电涂层,用于防霜挡风玻璃和面板照明。
虚拟现实 (VR) 和增强现实 (AR) 应用可让用户沉浸在数字世界中或将数字对象的图像添加到个人对周围物理环境的感知中,从而增强娱乐、游戏、学习和其他体验。VR 最常使用依靠立体显示器、空间音频和运动跟踪传感器的耳机来模拟完全虚拟的环境。AR 将虚拟元素分层叠加到物理环境中,通常通过智能手机或安装在专用眼镜上的显示器实现。VR 和 AR 统称为“XR”。许多 XR 技术使用耳机,但其他技术则使用先进的硬件 - 从汽车挡风玻璃上的平视显示器 (HUD) 到具有触觉服装、人造风和数十个摄像头的全尺寸虚拟环境。几乎所有 XR 技术都依赖于有关用户、其周围环境以及有时附近的个人的详细信息。
摘要。鉴于创伤性脑损伤(TBI)的患病率,并且许多轻度TBI都没有损伤的外部标志,因此迫切需要创新的评估技术。对评估的需求超出了传统的纸笔测试,这导致使用自动认知测试,以提高精度和效率;以及使用虚拟环境技术来增强生态有效性和增加基于功能的评估。要解决这些问题,随着Stroop刺激出现在挡风玻璃上的开发,涉及将主题沉浸在虚拟悍马中的虚拟现实stroop任务(VRST)。这项研究是对VRST的初始验证,作为对神经认知功能的评估。与纸笔以及Stroop的自动神经心理评估指标相比,VRST似乎具有增强的能力,表明参与者的反应时间和能力抑制了在军事相关的相关模拟中抑制前反应的能力,同时沉浸在心理生理学上的高度威胁性刺激性刺激性刺激性。
从一开始,系统模型就可以与 3D 流体模拟相结合,无论是用于引擎盖下热管理还是空气动力学。在早期设计中,可以使用简化的座舱来帮助在系统模型中提供改进的控制逻辑。这可以通过 Simcenter Amesim 中的嵌入式 CFD 进行扩展,用于为用户构建和运行 CFD 模型。随着设计的成熟,座舱的几何形状可用于查看加热和冷却通风口的位置和设计。此外,乘客也包含在数字模型中,因此您可以评估乘客的热舒适度。此外,通风口经过数字测试,以确保汽车符合政府关于挡风玻璃和侧视镜除冰/除雾的规定。3D 详细乘客舒适度模型是使用 Simcenter STAR-CCM+ 完成的,包括乘客拒绝的太阳辐射、传导、湿度和热量。结果可以映射回系统模型,以改进控制系统的逻辑,满足乘客的热舒适度。
相比之下,半被动(或半主动)标签有内置电池,但无法启动通信。这确保半被动标签仅在读取器查询时才处于活动状态。由于半被动标签确实有内部电源,因此它们确实比被动攻击提供更长的读取范围,但成本更高。经常使用半被动标签的一个示例应用是电子收费站。半被动标签通常固定在汽车挡风玻璃内侧。当汽车通过收费站时,它将向半被动标签发起查询并从标签中读取帐户标识符。板载电池可让标签在相当远的距离内被读取。但是,由于标签只需要在查询时进行广播,因此它可以在大多数时间保持空闲状态并节省电量。半无源标签也经常用于托盘级跟踪或在制造过程中跟踪汽车零件等组件。
涵盖了第一个连续的5次服务,限制为:3 x石油服务,2 x带花粉过滤器的石油和检查服务,3 x MOT。排除了其他工作,包括磨损,包括磨损。保修:5年或124,000英里。必须按照服务时间表的要求进行维修,所有维修和保修工作必须在大众商用车授权维修机上进行。适用保修外套(包括较短的零件保修期,需要磨损,机械调整(6个月/6,500英里)和挡风玻璃(1个月/600英里)。路边援助:不包括零件,车库,人工或其他成本超过指定限制的费用。适用其他限制和排除。请参阅路边协助手册以获取完整详细信息https://www.volkswagen-vans.co.uk/idhub/content/content/dam/onehub_nfz/importers/gb/gb/gb/downloads/oadide-side_assistes_assistance_assistance_handbook.pdf。由大众商用车金融服务管理的服务和MOT。由英国大众商用车管理的保修。AA管理的路边援助。
1.鹰狮 C 驾驶舱 2.皮托管 3.涡流产生板条 4.玻璃纤维天线罩 5.自动测向仪 (ADF) 天线 6.爱立信 PS-05 多模雷达 7.驾驶舱前部压力舱壁 8.偏航叶片(位于前机身下方且视野之外) 9.下超高频 (UHF) 天线(位于前机身下方且视野之外)视野) 10.入射叶片 11.编队照明条 12.方向舵踏板 13.挡风玻璃 14.广角抬头显示器 (HUD) 15.驾驶舱顶篷,铰接至左舷 16.顶篷破坏器微型引爆线 (MDC) 17.右舷进气口 18.MARTIN-BAKER MK10L ZERO-ZERO 弹射座椅 19.驾驶舱后部压力舱壁 20.发动机油门杆 21.左舷控制台面板 22.驾驶舱部分复合蒙皮镶板 23.带一体式滑行灯的前轮舱门 24.缩回执行器 25.双轮前起落架 26.液压转向千斤顶 27.27MM 大炮 28.左舷进气口 29.边界层分离板
下列术语使用时具有下列含义: 事故 - 与航空器运行有关的事件,就有人驾驶航空器而言,发生在任何人登机准备飞行直到所有此类人员下机期间,或就无人驾驶航空器而言,发生在航空器准备好飞行直到飞行结束时停止并且主推进系统关闭期间,其中: a) 人员因以下原因导致致命或严重受伤: - 在航空器内,或 - 直接接触航空器的任何部件,包括从航空器上脱落的部件,或 - 直接暴露于喷气气流中,但伤害是自然原因、自己造成或他人造成,或伤害发生在藏匿在乘客和机组人员通常可进入区域之外的偷渡者身上的情况除外;或者 b) 飞机遭受损坏或结构故障,且: - 对飞机的结构强度、性能或飞行特性造成不利影响,并且 - 通常需要对受影响的部件进行大修或更换,发动机故障或损坏除外,当损坏仅限于单个发动机(包括其整流罩或附件)、螺旋桨、翼尖、天线、探头、叶片、轮胎、刹车、机轮、整流罩、面板、起落架舱门、挡风玻璃时
图 2:基于 24 小时 TEG 的能量收集系统的实验研究。(A)照片显示,在马萨诸塞州波士顿东北大学屋顶测试 24 小时 TEG 设备。插图描绘了横截面示意图和 TEG、太阳、环境和外层空间之间的能量流动。(B)24 小时 TEG 模块示意图,由黑色涂层两用铜板组成,既可用作太阳能加热器,又可用作辐射冷却器。TEG 模块使用导热膏与铜板和散热器连接。将铝制散热器插入土壤中,在白天释放热量,在夜间吸收热量。 TEG 模块的顶视图 (C) 和侧面视图 (D)。(E) 设备的顶视图,带有土壤湿度计以显示土壤中的湿度水平,带有 K 型热电偶的挡风玻璃用于监测环境温度,热电偶用于记录 TEG 模块顶部和底部表面以及土壤中两个不同位置的温度。(F) 展示基于 TEG 的 24 小时太阳、外太空和土壤之间能量收集系统的运行原理的示意图。
集中精力于路况,同时接收所需信息,而不会分心失焦。 在高达 25° 的视野和 10 米的图像距离内,他们可以获得想要或需要的选定信息。 这带来了显著的安全优势,尤其是与不断扩大的显示器相比,因为后者存在分散驾驶员注意力的风险,图 3。与使用传统镜子和镜头的传统 HUD 方法相比,蔡司微光学技术可将体积显著减少 50% 以上,并实现最大的设计灵活性,同时提供前所未有的图像质量。 这使得几乎任何汽车都可以实现这种舒适性和安全性。 即使没有增强现实显示器,投影技术也提供了决定性的安全优势。 集成的、透明的功能层将空间需求减少到 1 升以下。 借助透明的平面显示器,可以在挡风玻璃的任何部分显示所有关键信息。这使得全新的车辆驾驶舱设计成为可能。其他优点包括功能简单和舒适度更高:例如,娱乐内容可以投射到前排乘客的视野中。具有显示功能的透明层也适用于侧窗和后窗。