摘要 自 2000 年代初以来,许多飞机驾驶舱就已使用交互式驾驶舱,但即使在最新的飞机中,交互的使用仍然仅限于非关键功能。事实上,设计这样的交互式系统仍然是一个挑战,而且它们的设计尚未达到关键功能所需的设计保证水平。在交互式驾驶舱中,交互通过图形输入设备和键盘进行(例如空客系列中的键盘光标控制单元),而用户界面 (UI) 的行为必须符合 ARINC 661 标准中定义的规范。本文提出的工具支持的三重方法提出了提高交互式系统保证水平的方法。该方法包括用于描述交互系统每个组件的正式描述技术(检测和预防开发故障)、专用于交互系统组件的命令和监控技术(检测自然故障)以及隔离运行时环境(防止故障传播)我们报告了使用此方法实现的飞行控制单元 (FCU) 面板,其灵感来自 A380 的 FCU。
在续签工作许可之前,需要在以下申请人中完全免疫乙型肝炎。医生,牙医,助产士,护士,辅助医学专业,护理人员/托车者,保姆,美容治疗师,美容师,水疗治疗师和按摩治疗师和纹身师。丙型肝炎抗原测试(HBSAG)需要在启动乙型肝炎B疫苗接种时间表之前立即进行。
AST 的高压流量控制器 (HP-FCU) 可用于为低压部分的一个或两个设备提供恒定的质量流量。为此,HP-FCU 将两级压力调节器和流量控制器的功能结合在一个单元中。测量单元入口处的高压,并通过两步控制膨胀将其降低到中间压力。质量流量控制是通过精密质量流量限制器实现的。
本文通过负荷调度和可用能源的优化利用来探讨智能家居能源管理。本研究考虑了三种能源:国家电网、光伏 (PV) 能源和存储单元。光伏阵列可以在给定的工作点为负载提供最大功率,其中输出功率随温度、辐射和负载而变化。因此,提出了一种实时控制器来跟踪最大功率。提出了一种智能家居中的能源管理算法,以实现尽可能降低电费的主要目标。该算法涉及通过为每个负载分配优先级来调度负载。根据负载的优先级和可用能量为它们提供所需的功率。得到的结果表明,使用基于模糊的 MPPT 为光伏系统供电表明系统效率提高。结果还表明,使用基于负荷调度的能源管理可以显着降低电费。
发动机电子控制单元(EECU)是航空发动机中非常重要的部件,在其开发过程中需要进行多项验证试验。由于使用实际发动机进行此类验证试验需要花费大量的时间和成本,而且昂贵的发动机可能会损坏或出现安全隐患,因此,能够虚拟地产生与实际发动机相同信号的模拟器是必不可少的[1]。替代实际发动机的虚拟发动机模拟器应该能够实时提供与实际发动机运行几乎相同水平的发动机运行模拟。因此,模拟速度应该与实际系统在用户指定的时间范围内进行输入、计算和输出的速度一样快。实时仿真需要开发能够几乎实时进行计算的实时发动机模型和适当的硬件。已经进行了许多关于燃气涡轮发动机电子发动机控制系统的研究。在之前的研究中,W.J.Davies 等人进行了 F-14 飞机和推进控制集成评估。他们的论文介绍了 PWA 执行的 FADEC/F-14 集成评估,并讨论了 FADEC/F-14 集成系统的优势 [2]。H. Yamane 等人对飞机发动机控制系统的各个方面进行了调查。在他们的工作中,提出了各种用于飞机发动机的电子控制系统 [3]。F. Schwamm 对安全关键应用的 FADEC 计算机系统进行了研究。在 Schwamm 的工作中,研究了 FADEC 的发展趋势 [4]。K. Hjelmgren 等人。对单引擎飞机 FADEC 的可靠性分析进行了研究。他们的论文介绍了用于控制飞机燃气涡轮发动机的两种容错 FADEC 选项的可靠性分析 [5]。K. Ito 等人。对燃气涡轮发动机 FADEC 的最佳自诊断策略进行了研究。在他们的论文中,FADEC 在第 n 次控制计算时进行自诊断。最后提供了数值示例 [6]。Ding Shuiting 等人。对 FHA(功能性
本文档不包含 ITAR 22CFR§120.10 或 EAR 15CFR§772 定义的技术数据。本文档中包含的数据(包括规格)为摘要性质,可能随时更改,恕不另行通知,L3 Cincinnati Electronics Corporation(商名为 L3Harris Technologies)有权自行决定。致电获取最新修订版。引用的所有品牌和产品名称均为其各自所有者的商标、注册商标或商品名称。实际设备性能将取决于客户应用。
•D2 - 从增量编码器发出的脉冲;通过FOD817 OptoCOPLER分离。在输出侧我使用了大约1k电阻器将开放式收集器连接到5V。•D3,D4 - A,B输入来自增量编码器;不需要上拉电阻•D5 - 旋转编码器按钮的输入;不需要上拉电阻•D6 - 用户输出B - 使用晶体管我要切换5V继电器,以打开13.8V TRX电源的功率。不要忘记继电器周围的反平行二极管。请注意,继电器必须为5V,因为最初在电源降低时,Arduino董事会仅由USB(5V)供电。•d7,d8,d9,d10,d11,d12 - 连接到4线设置中使用的2x16字符lcd显示器(RS,E,D4,D5,D5,D6,D7)。r/w输入的LCD显示器已连接到地面,因为只执行了要显示的写入。通过电压分隔器•D13 - 控制显示器的背光;如果不活动较长的背光熄灭•A0 - h-bridge控件,侧面1(左)•A1-H桥控件,侧面2(右)•A2 - A2 - 适用于H-Bridge•A3 - A3 - 用户输出A;类似于用户输出B,但是在我的情况下,我要控制天线开关的24V继电器
额定稳定温度为1000°C,而不是使用高压塞实现的900°C。即使在低电池电压条件下,也可以保证预热。驾驶过程中电池电压下降得到补偿。在高压系统中,由于起动器吸收的电流,电池电压大幅下降,从而阻止插头达到其正确的工作温度。当额定的插头电压为4.4 V时,这不会发生。弥补了由发动机旋转的通风引起的发光插头冷却。这是通过调节有效的施加电压来进行的。根据发动机和气候条件调节插头提供的热量。更快的预热。在恒温下进行加热。预热控制单元具有用于诊断的智能系统,该系统允许单个发光插头可能被短路或中断被识别,从而减少了保修成本和维护时间。
风扇速度控制 速度控制可为进气和排气共用,或为每个分支独立控制。对于程序模式和带有外部 VCB 控制的手动模式,它提供两步风扇输出功率设置选择。这样,可以控制以下设备: 双速电机 五步电压控制器 变频器 可以在 VCB 单元上设置更高和更低的速度。由生产商或用户根据所需空气流量的草案设置进行设置。电压五步控制器和变频器的示例: 为整个单元运行设置较高速度 - 速度控制器上的 5. 级。为降低输出功率设置较低速度(例如控制器上的 3. 级输出功率)。对于周程序,这意味着当请求更高的速度时,设备将始终以 5 级运行,而当请求更低的速度时,设备将始终以 3 级控制器运行。对于带有内部设备的手动模式,可以为电压控制器和变频器设置五个输出功率等级。
专为电子/通信机房设计,提供商用级空调。该装置可在各种室外条件下持续高效运行。对于已安装窗式空调的机房,该装置的设计使其可轻松升级到商用级 Marvair 环境控制装置。壁套可滑入 26-1/2” (673 mm) x 17-3/4” (451 mm) 的开口,这是许多窗式装置的标准开口尺寸。借助内置安装法兰,空调可快速简单地安装到建筑物外部。单件式送风和回风格栅可轻松连接到壁套以完成安装。装置中提供工厂安装的电热,从而无需基板加热和第二个电源。