控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公
接口和TM1650 通信,在输入数据时当SCL 是高电平时,SDA 上的信号必须保持不变;只有SCL 上的 时钟信号为低电平时,SDA 上的信号才能改变。数据输入的开始条件是SCL 为高电平时,SDA 由高变
技术和算法越来越多地渗透到日常工作的管理中,特别表现出在员工控制中的巨大潜力。为了深入探索算法控制对员工对数字传输背景下改变态度的态度的影响,这项研究以角色理论为基础,并深入了解算法控制的概念,构建了一个调解模型,包括算法,算法,责任控制,员工的承诺,雇员的承诺,以改变和变化。利用在线和离线问卷调查方法中,本研究验证了算法控制对就业对变革及其基础途径的态度的影响。研究结果表明,算法控制大大加剧了员工的角色压力,随后提高了他们对变革的抵抗力,并相应地减少了他们对变革的承诺。这项研究不仅为组织环境中算法控制的研究开辟了新的理论观点,而且还为努力实施科学问题的组织提供了宝贵的实践指导。
易等)由公司控股股东 CRH (Microelectronics) Limited (华润集团(微电子)有
在现代操纵器交互任务中,由于环境的复杂性和不确定性,准确的对象表面建模通常很难实现。因此,改善操纵器与环境之间相互作用的适应性和稳定性已成为相互作用任务的重点之一。针对操纵器的互动任务,本文旨在在视觉指导下实现良好的力量控制。因此,基于Mujoco(带有触点的多关节动力学)物理引擎,我们为操纵器构建了交互式仿真环境,并创新地集成了基于位置的视觉伺服控制和录取控制。通过深度强化学习(DRL)中的近端策略优化(PPO)算法,有效地集成了视觉信息和力量信息,并提出了结合视觉感知的接收性控制策略。通过比较实验,将允许控制与视觉感知相结合,并将力控制的整体性能提高了68.75%。与经典的入学控制相比,峰值控制精度提高了15%。 实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。与经典的入学控制相比,峰值控制精度提高了15%。实验结果表明,在平坦和不规则的凹面环境中,允许控制与视觉感知结合表现良好:它不仅可以准确地执行视觉构成的力控制任务,而且还可以在各种接触表面上维持施工力,并迅速适应环境变化。在精确组装,医疗援助和服务操纵器的领域中,它可以提高操纵器在复杂和不确定的环境中的适应能力和稳定性,从而促进智能操纵器的自主操作的发展。
· 易于操作 – 一个控制卡可用于 PROFINET、以太网/IP 和 EtherCat(简单切换总线协议)或 ASi · 为 RollerDrive 提供独立电源 · 更换时即插即用 – 无需寻址或配置 · 所有功能和 I/O 的状态显示均采用 LED · 用于零压力累积输送的集成逻辑,包括初始化 · 使用证书进行安全通信:PROFINET 一致性 B 类、以太网/IP ODVA 一致性、EtherCat 一致性 · 通过 PLC、Web 浏览器菜单和示教方法配置:– RollerDrive 的速度、旋转方向、启动和停止斜坡 – 传感器属性 – 计时器 – 错误处理 – 逻辑(单个/序列释放)· UL 认证 · 通过制动斩波器限制电压 · 可变过程图像用于优化 MultiControl 和 PLC 之间传输的数据量 · 通信线路屏蔽的功能接地 · 电压供应的极性反接保护 · 输入和输出电压供应的短路保护设计
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。
参考:1。医学期刊武装部队印度,2022年9月1日; 78:S158-62 2。麻醉与镇痛,2019年6月1日; 128(6):1098-1105。3。麻醉学。2019年2月; 130(2):203-12。4。麻醉学。2017年2月; 126(2):268-75。5。麻醉学。2018 Jun; 128(6):1099-106。 6。 麻醉学。 2017; 126(2):268-275.11 7。 麻醉学。 2018 Jun; 128(6):1099-1106.7 8。 Anesth肛门。 2019; 128(6):1098-1105.3 9。 麻醉学。 2019; 130(2):203-212.5 10。 J Clin Pharmacol(2017)83 339–348 11. https:/www.accessdata.fda.gov/scripts/cder/cder/ob/search_product.cfm 12.国际临床心理药物学。 1999年7月1日; 14(4):209-182018 Jun; 128(6):1099-106。6。麻醉学。2017; 126(2):268-275.11 7。麻醉学。2018 Jun; 128(6):1099-1106.7 8。Anesth肛门。2019; 128(6):1098-1105.3 9。麻醉学。2019; 130(2):203-212.5 10。J Clin Pharmacol(2017)83 339–348 11. https:/www.accessdata.fda.gov/scripts/cder/cder/ob/search_product.cfm 12.国际临床心理药物学。 1999年7月1日; 14(4):209-18J Clin Pharmacol(2017)83 339–348 11. https:/www.accessdata.fda.gov/scripts/cder/cder/ob/search_product.cfm 12.国际临床心理药物学。1999年7月1日; 14(4):209-18
视觉语言模型(例如剪辑)对零拍或无标签预测的各种下流任务显示出很大的影响。但是,当涉及到低级视觉时,例如图像恢复其性能会由于输入损坏而急剧下降。在本文中,我们提出了一种退化感知的视觉模型(DA-CLIP),以更好地将预验证的视觉模型转移到低级视觉任务中,作为用于图像恢复的多任务框架。更具体地说,DA-CLIP训练一个额外的控制器,该控制器适应固定的剪辑图像编码器以预测高质量的特征嵌入。通过通过交叉注意将床上用品集成到图像恢复网络中,我们能够试行该模型以学习高保真图像重建。控制器本身还将输出与输入的真实损坏相匹配的降级功能,从而为不同的降解类型产生天然分类器。此外,我们将混合降解数据集与合成字幕结构为DA-CLIP训练。我们的方法在特定于降解和统一的图像恢复任务上提高了最先进的性能,显示出具有大规模预处理视觉模型促使图像恢复的有希望的方向。我们的代码可在https://github.com/algolzw/daclip-uir上找到。
1加利福尼亚州立大学北林北林里奇的化学与生物化学系,加利福尼亚州北林91330,美国2化学与化学工程学院,西南石油大学,成都610500,P.R。中国3中国电子科学与工程学院,中国电子科学技术大学(UESTC),成都610054,P。R.中国4材料科学与冶金系,剑桥大学,Charles Babbage Road 27 60607,美国6地球科学系,加利福尼亚州圣塔芭芭拉分校,加利福尼亚州93106,美国†这些作者为这项工作做出了同样的贡献。*可以解决信件:电子邮件:mmiao@csun.edu,rhemley@uic.edu作者贡献:M.M。设计了研究,以及C.P.,R.H。和Y.Z.完善了方法。Y.S. 和L.Z. 做出了同等的贡献并进行了计算。 M.M和Y.S. 领导了结果分析,并与R.H.和C.P.一起进行了分析。 写了手稿。Y.S.和L.Z.做出了同等的贡献并进行了计算。M.M和Y.S. 领导了结果分析,并与R.H.和C.P.一起进行了分析。 写了手稿。M.M和Y.S.领导了结果分析,并与R.H.和C.P.一起进行了分析。写了手稿。