本新闻稿中关于未来预期、计划和前景的陈述,以及任何其他关于非历史事实的陈述,可能构成《1995 年私人证券诉讼改革法》所定义的“前瞻性陈述”。这些陈述包括但不限于与预期交易开始和结束日期有关的陈述。“预期”、“相信”、“继续”、“可能”、“估计”、“期望”、“打算”、“可能”、“计划”、“潜在”、“预测”、“预计”、“应该”、“目标”、“将”、“会”等词语和类似表达旨在识别前瞻性陈述,但并非所有前瞻性陈述都包含这些识别词。由于各种重要因素,实际结果可能与此类前瞻性陈述所示的结果存在重大差异,包括:与市场条件相关的不确定性以及 Sidus Space 截至 2021 年 12 月 31 日的 10-K 表年度报告中“风险因素”部分更详细描述的其他因素,以及提交给美国证券交易委员会的其他定期报告。本新闻稿中包含的任何前瞻性陈述仅代表本新闻稿之日的观点,Sidus Space, Inc. 明确表示不承担更新任何前瞻性陈述的义务,无论是由于新信息、未来事件还是其他原因。
系统寿命和阀门循环寿命之间的相关性。CAMFlow 控制方案已在 600W 霍尔推进器上成功测试和验证。这包括开环、闭环和冷“硬”启动操作。控制阀循环超过 1.2 亿次脉冲,同时保持非常低的泄漏率,从而显示出长寿命潜力。CAMFlow 单元目前专注于流量在 0-10 mg/s 范围内的较小霍尔效应或网格离子电力推进系统。然而,该技术广泛应用于更广泛的商业市场的更大流量范围。CAMFlow 系统将接受高达 2,500 psia 的输入压力并将输出流量控制在 <±3%。通过使用较便宜的太空级组件,CAMFlow 技术提供了可靠的低成本流量控制器,非常适合亚千瓦霍尔/离子推进器。
本文介绍了全球范围内混合火箭发动机在太空运输中的应用发展现状。介绍了历史根源,并分析了在几十年内人们对混合技术兴趣不大之后重新审视该技术的原因。本文讨论了探空火箭、可重复使用亚轨道系统和运载火箭的现代发展,特别关注推进剂技术。各种推进剂组合包括使用液氧、过氧化氢、一氧化二氮和一氧化二氮-氧气混合物作为氧化剂。本文考虑了不同的燃料,并考虑了性能以及可获得的回归率等。本文介绍并分析了使用不同推进剂组合的车辆的初步计算结果。并与全球范围内提出的混合火箭配置进行了比较。本文指出了尚未解决的问题和几个未知数,包括混合火箭发动机的可扩展性问题、大型发动机的燃烧不稳定性、金属化燃料的燃烧效率、推进剂的体积性能以及车轮颗粒几何形状下的燃料残留质量。本文讨论了新型太空混合运载火箭(虽然通常级间可重复使用性有限)是否在成本上与其他化学火箭推进系统开发相比具有竞争力。本文总结了未来潜在的进步和技术机遇。进行这项研究的主要目的是对全球现有或目前正在开发的不同混合推进技术进行比较。
脉冲核空间推进技术是 20 世纪 50 和 60 年代由弗里曼·戴森、特德·泰勒、西奥多·冯·卡门和汉斯·贝特等杰出物理学家研究的,它使用专门的原子装置产生的紧凑型核爆炸来推动大型航天器。这项技术通常以其开发所在的空军项目的名称而为人所知:猎户座。长期以来,人们一直认为 1962 年《部分禁止核试验条约》禁止使用核脉冲空间推进技术。在对猎户座项目及其结果进行调查并审查了适用法律后,本文得出结论,1967 年《外层空间条约》中的语言可能会凌驾于《禁试协议》之上,允许非武器使用核爆炸物进行推进。随着新一轮太空竞赛的展开,以及中国等重要参与者完全不受《禁试条约》约束,脉冲核空间推进技术这一主题值得重新审视。