摘要:Carla模拟器(学习行动)是测试算法并在自主驾驶领域生成数据集(AD)的强大平台。它提供了对各种环境参数的控制,从而可以进行彻底的评估。开发边界框通常是深度学习中通常使用的工具,并且在广告应用中起着至关重要的作用。使用边界盒识别和描述感兴趣的对象(例如车辆),用于识别和描述感兴趣的对象的主要方法。卡拉中的操作需要捕获地图上所有对象的坐标,随后与传感器的坐标系在自我车辆的坐标系统中,然后将相对于自我车辆的透视图包装在边界框中。但是,这种主要方法遇到了与对象检测和边界框注释相关的挑战,例如幽灵盒。尽管这些程序通常可以有效地检测其直接视线内的车辆和其他物体,但它们也可以通过识别被障碍物掩盖的物体来产生误报。我们已经增强了主要方法,目的是滤除不需要的盒子。绩效分析表明,改进的方法已经达到了很高的精度。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
摘要。我们提出了一种3D建模方法,该方法使最终用户能够使用机器学习来完善或详细说明3D形状,从而扩展了AI辅助3D内容创建的功能。给出了粗素形状(例如,使用简单的盒子挤出工具或通过生成建模产生的形状),用户可以直接“绘制”所需的目标样式,代表了引人注目的几何细节,从输入示例形状,而不是粗糙形状的不同区域。这些区域然后被上采样成高分辨率的几何形状,这些几何形状与彩绘样式相连。为了实现这种可控和局部的3D详细信息,我们通过使其意识到掩盖的方式在金字塔GAN的顶部构建。我们设计了新颖的结构损失和先验,以确保我们的方法可以保留所需的粗糙结构和细粒度的特征,即使从不同的来源(例如,不同的语义部分,甚至不同的形状类别)借用了涂漆样式。通过广泛的实验,我们表明我们本地化细节的能力可以实现新颖的交互式创意工作流程和应用。我们的实验进一步证明,与基于全球细节的先前技术相比,我们的方法生成结构具有高分辨率的高分辨率风格的几何形状,并具有更连贯的形状细节和样式过渡。
未来的机载雷达将需要在由杂波和干扰组成的干扰背景下检测目标。空时自适应处理 (STAP) 是指多维自适应滤波算法,它同时将来自阵列天线元件的信号和相干雷达波形的多个脉冲组合在一起,以抑制干扰并提供目标检测。STAP 可以改善对被主瓣杂波遮蔽的低速目标的检测、对被旁瓣杂波掩盖的目标的检测以及在杂波和干扰组合环境中的检测。本报告分析了解决 STAP 问题的各种方法。回顾了最佳或完全自适应处理。计算复杂性以及从有限可用数据中估计干扰的需求使完全自适应 STAP 不切实际。因此,需要部分自适应空时处理器。介绍了降维 STAP 算法的分类,其中算法根据所采用的预处理器类型进行分类。例如,波束空间算法使用空间预处理,而后多普勒方法在自适应处理之前执行时间(多普勒)滤波。在某些情况下,可以利用杂波的特殊结构来设计产生最小杂波等级的预处理器。对于每个类,可以采用样本矩阵求逆 (SMI) 或基于子空间的权重计算。仿真结果显示
自我监督的学习吸引了越来越多的关注,因为它在没有注释的情况下从数据中学习了数据驱动的代表。基于视觉变压器的自动编码器(VIT-AE)(He等人,2021)是一种最近的自我监督的学习技术,它采用补丁掩盖策略来学习有意义的潜在空间。在本文中,我们专注于改善VIT-AE(绰号为VIT-AE ++),以更有效地表示2D和3D医疗信息。我们提出了两个新的损失功能,以增强训练阶段的表示。第一个损失术语旨在通过考虑建立依赖性并间接改善表示形式来改善自我重建。第二损失项的利用对比损失,以直接从两个随机掩盖的视图中优化表示形式。作为独立的贡献,我们将Vit-ae ++扩展到3D fash-im,以进行体积医学图像。我们在自然图像和医学图像上广泛评估VIT-AE ++,这表明对香草Vit-Ae的持续改善及其优于其他对比学习方法。我们的代码可在https://github.com/chinmay5/vit_ae_plus_plus.git关键字:表示;自学学习;蒙版视觉变压器
摘要:云和其他数据伪像经常限制从远程感知的地球观测中检索关键变量。我们训练具有高保真海洋模拟的自然语言处理(NLP)启发的算法,以准确地重建海面温度(SST)领域的掩盖或缺失数据,这是由全球气候观察系统确定的54个基本气候变量之一。我们证明,所谓的模型(称为e nki)反复超过先前采用的钻头技术,最多可以在重建错误中的数量级,同时即使在大多数像素被掩盖的情况下也显示出非凡的性能。此外,对具有至少40%的掩盖百分比的真实红外传感器数据的实验显示出比该传感器的已知不确定性少的重建误差(均方根误差(RMSE)≲0.1K)。我们将E nki的成功归因于NLP的细心性质与现实的SST模型输出相结合,这种方法可以扩展到其他远程感知的变量。这项研究表明,基于E nki或其他类似的先进系统的系统可能会产生最佳解决方案,以减轻气候关键海洋数据集中对迅速变化的地球进行采样的蒙面像素。
对药物治疗的患者特定反应的准确,可靠的预测对于药物开发和个性化医学至关重要。但是,患者数据通常太稀缺了,无法训练广义的机器学习模型。尽管已经开发了许多方法来利用细胞系数据,但由于数据分布变化和混杂因素,很少有它们可以可靠地预测患者对新药的临床反应。我们开发了一种新颖的上下文感知的反面自动编码器(Code-AE),该自动编码器(Code-AE)可以提取通过上下文特定模式和混杂因素掩盖的常见生物学信号。广泛的研究表明,代码可以有效地减轻模型泛化的分布外问题,显着提高了对最先进方法的准确性和鲁棒性,这两种方法都可以预测患者特异性的体内和体内药物反应纯粹是从体外筛查中,并且是从体外筛查中的,并且是从体外筛查中的,并脱离了本质上的生物学因素。使用Code-AE筛选了9,808例癌症患者的50种药物,并发现了新型的个性化抗癌疗法和药物反应生物标志物。
执行总结过去几十年来,从天主教会到美国的体操再到童子军的大型机构的长期性虐待,引起了长期掩盖的性虐待。加利福尼亚州一再加强其法律,为童年时期的性侵犯而遭受的损害赔偿提供了诉讼。这涉及扩大所包括的行为,扩大相关的限制法规,消除限制法规,并为过期的索赔提供复兴期。这些变化中的许多变化都对这种性侵犯经历特别急性创伤的儿童幸存者表示赞赏。科学研究和研究清楚地表明,这些罪行的许多受害者都压抑了对袭击的记忆,或者非常害怕举报。因此,童年的性侵犯被严重报道不足为奇。使事情变得更糟,许多犯罪发生的机构在掩盖性侵犯和未能防止进一步损害方面发挥了作用。该作者提出的法案通过恢复员工对这些设施施加的儿童性侵犯索赔并绕过服务人政府的索赔时间表来解决县缓刑营和儿童拘留设施中有据可查的虐待。该法案得到了各种团体的支持,包括启动正义。委员会没有及时反对。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
最新的规模突破使强大的生成语言模型的出现以及通过将这些模型调整为各种任务的能力,可以通过将它们投入到提示或指令中。在这种景观中,无监督的域适应性(UDA)或利用从标记的源域到未标记的目标域的知识的问题已被遗留下来,最近仍在解决犯罪性犯罪分类的最新UDA方法。特别是,在生成环境中探索了两种流行的UDA方法,涉及持续的预训练(CPT)和学习域的不变表示形式。在这项工作中,我们评估了CPT对生成UDA的实用性。我们首先进行经验评估,以衡量CPT和强大方法之间促进域的权衡。我们进一步评估了CPT的质量扩展到不同体系结构,调整方法和数据制度的程度。然后,我们通过研究其在目标域上的分类性能在多大程度上使CPT的使用。最后,我们试图了解CPT改善未标记目标域上的分类性能的机制。我们的发现表明,该模型暗中学习了下游任务,同时预测掩盖的单词可以为该任务提供信息。我们的工作将UDA研究的主体与教学调整联系起来,从而朝着更广泛的现代语言模型迈出了第一步。我们的代码可在https://github.com/uppaal/ cpt-generative-uda上找到。