尽管 Datonis 平台是一个与行业无关的物联网平台,但 Altizon 在汽车和化学品制造商、石油和天然气以及公用事业公司的工业资产监控和相关分析方面拥有成熟的能力。Altizon 并未通过过去在运输和物流子行业的表现展示经验或实力。观察到的和可验证的工业用例包括实时监控制造、公用事业、运输和物流生产环境中运营和业务选区的质量指标数据。具体而言,Altizon 已证明其在整体设备效率 (OEE) 和资产 CBM 方面拥有成熟的能力,可用于优化生产线速度、提高产量、降低能耗、减少质量缺陷以及工具和备件成本。Altizon 还向客户展示了资产运行参数(例如振动、吸入压力和轴承温度)的可见性,以实现预测性故障和备件管理。
自 CRISPR 基因组编辑出现以来的十年里,科学家们已经开发出一套工具包来解决人类和地球面临的最紧迫问题。有了精确编辑农作物基因组的能力,我们可以改变营养成分以对抗营养不良,去除木薯等主食中的毒素,提高产量以对抗饥饿,提高抗虫性,减少对农用化学品投入的需求。编辑后的产品还可以引入适应性以应对干旱和洪水,增加生物多样性,并有助于捕获更多的碳,恢复农田土壤并提高边际土地的肥力。CRISPR 的好处不仅限于产品开发。作为一种研究工具,它可以用于进行基因筛选,解锁新的生物途径,扩大我们对基因组和突变功能影响的了解,所有这些都为我们未来的应用提供了新的选择。
摘要 干旱是一种对植物生长和生产产生不利影响的环境因素。由于气候不可预测,农业生长阶段干旱相关问题的频率正成为提高产量的主要障碍。需要新的方法来提高生产力和干旱适应性。需要表达特定的与压力相关的基因,以便通过基因工程提高抗旱性,这是非常可取的。在具有转基因 DNA 的植物中,已经确定了传递抗旱性并增强植物生存和发育的基因。在本概述中,我们专注于创造能够抵御干旱的转基因植物。利用与环境压力或其他转录因子相关的基因,以及其他与压力相关的基因,大多数栽培植物已经变得抗旱并能抵抗其他非生物胁迫。它会导致精确的肥料改变 DNA,而对植物的生长发育几乎没有影响。关键词:转基因、基因工程和干旱
引言提高玉米产量一直是玉米育种的主要目标,而在气候压力和全球人口增长的背景下,提高产量变得更具挑战性。近几十年来,玉米产量的提高依赖于高施肥和高农药,以及在特定气候区培育高产和适应性品种。前一种方法对可持续发展产生了许多不利影响[1],而后一种方法培育出的玉米品种无法应对气候变化的挑战。玉米的高产取决于许多性状,包括耐受生物和非生物胁迫的能力(图1)。平衡这些性状之间的权衡是获得高产和稳定玉米产量的关键,需要对基因、途径、自然变异和局部适应有清晰的机制理解。基于基因组学的育种被认为是解决玉米高产和稳定产量问题的最佳解决方案。
kratschmer准备富勒烯的方法是当前广泛使用的方法,已由各种工人修改以提高产量。再次以纯形形式分开了c 60和c 70。石墨电极在约100托尔的氦气(Kratschmer)的大气中蒸发,或在玻璃容器(改良的RB烧瓶,来自变压器的功率)中的氩气(Kroto)的50 -100托尔(Kroto)。将形成的烟灰取消并分散在苯中,从而获得了葡萄酒红色溶液。这是从不溶性固体中过滤并浓缩的。使用己烷作为洗脱液,将C 60和C 70的这种混合物在氧化铝柱上运行。Magneta彩色C 60洗脱等,然后是港口葡萄酒彩色C 70。在典型的情况下,C 60与C 70的比率为
欧盟及其成员国已采取多项措施加强欧洲国防工业,特别是自俄罗斯对乌克兰发动战争以来。成员国增加了国防预算,预计到 2024 年,其总额将达到每年 3500 亿欧元。欧洲防务基金正在投资研究和能力开发项目,迄今为止取得了非常积极的成果。永久性结构化合作还为合作防御的进展提供了法律框架和有约束力的承诺。欧盟还打破了禁忌,同意了一项联合国防采购工具(通过共同采购法案加强欧洲国防工业)和一项加强弹药生产的倡议(支持弹药生产法案)。这些是支持乌克兰弹药需求的三轨提案的一部分(从现有库存中交付弹药、从工业界联合采购以及支持提高产量)。2024 年 3 月,欧盟委员会提出了有史以来第一个欧洲国防工业战略和实施该战略的国防工业计划。
玉米 ( Zea mays ) 是世界上最重要的粮食作物之一,全球产量最大,为满足人类对食物、动物饲料和生物燃料的需求做出了贡献。随着人口增长和环境恶化,迫切需要采取高效、创新的育种策略来开发高产抗逆的玉米品种,以保障全球粮食安全和可持续农业。CRISPR-Cas 介导的基因组编辑技术 (CRISPR-Cas (CRISPR-associated)) 已成为植物科学和作物改良的有效而有力的工具,并且可能以不同于杂交和转基因技术的方式加速作物育种。在本综述中,我们总结了 CRISPR-Cas 技术在玉米基因功能研究和新种质生成中的应用现状和前景,以提高产量、特种玉米、植物结构、应激反应、单倍体诱导和雄性不育。本文还简要回顾了玉米基因编辑和遗传转化系统的优化。最后,讨论了使用 CRISPR-Cas 技术进行玉米遗传改良所带来的挑战和新机遇。
大豆是一种重要的豆科作物,主要用于提取油脂和蛋白质,可作为人类和牲畜的食物来源。我们还可以利用从大豆中获得的蛋白质来提取生物燃料。迫切需要增加对大豆的基因研究,以改良和提高产量。对大豆进行基因研究的一个重要原因是提高其对气候变化的适应能力。在现代,CRISPR/Cas9 已发展成为一种新兴技术,使我们能够操纵包括大豆在内的大多数作物中选定性状的基因。先进的生物技术工具被广泛用于提高作物产量、提高质量和产量、引入抗病虫害能力以及环保。本综述概述了 CRISPR/Cas9 的机制如何发挥作用,并简要讨论了 CRISPR/Cas9 扩大了大豆基因改良的研究范围。它还说明了一些我们可以使用 CRISPR/Cas9 改良大豆的现象。关键词:CRISPR/Cas9;遗传改良;大豆;基因编辑。
本综述重点介绍了各种生物技术的优势,并介绍了它们如何通过使用 CRISPR Cas9 基因编辑技术操纵细菌、藻类、真菌和高等植物的遗传内容来提高其生物燃料产量。CRISPR-Cas 9 或规则间隔的短回文重复序列的蛋白质簇是迄今为止在基因组特定位置进行基因编辑的最基本、最有效的工具。通过采用 CRISPR-Cas9 机制的基因敲除技术,生物燃料的多样化得到了改善。CRISPR-Cas9 也成为改变生物体代谢途径和基因组以生产工业生物燃料的首选技术。它继续分析微生物对生物燃料生产的贡献以及基因组编辑技术,以提高某些物质的生产,包括转基因藻类、酵母和细菌以提高产量。由于燃料需求的不断增加和全球变暖的挑战,这种生物燃料生产的必要性是有原因的。该评论总结了与所使用的基因工程技术有关的该领域研究范围的最新趋势。
人类不断发明新机器来提高产量。想想自行车和汽车如何扩大了人类的出行距离和速度,同时彻底改变了体验。这些机器基于车轮和内燃机的通用技术。人工智能 (AI) 是最新的通用技术,它被用来重新定义银行体验和商业经济,就像以前的计算机和互联网一样。可能性无穷无尽,而且已经得到有限的证实。例如,想想人工智能如何彻底改变我们与机器交互的方式——它正在将理解的责任从人类转移到机器。以前,我们必须知道去哪里、点击什么来完成特定任务,而现在你可能只需询问 Google 或 Siri 或 Alexa 即可。这将改变客户采用和体验格局。同样,基于人工智能的机器人可以为您的客户提供上千种小便利,例如一键重复付款,或为您的员工提供上千种小便利,例如创建信用评估备忘录草稿。这些机器人已在银行(例如聊天机器人)和行业(例如机器人吸尘器)的一些常见用例中得到部署。