除了机械性能之外,超细粒材料的焊接对于结构使用也很重要。如果将融合焊接应用于超纤维砂岩材料,则很容易发生晶粒生长,并且强度降低。另一方面,摩擦搅拌焊接(FSW)可以抑制晶粒的生长,因为在FSW期间输入了较低的热量。8–12)因此,与融合焊接相比,FSW应该是一种更好的焊接金属的焊接方法。fsw主要用于铝合金,因为高熔化温度材料(例如钢)很难FSW。但是,钢是最常用的结构材料。这项研究的目的是阐明FSW在SPD制造的超纤维颗粒钢中的机械性能和微观结构的变化。还研究了具有中间尺寸的退火钢,还研究了超纤维和常规晶粒尺寸之间的中间大小,以阐明初始晶粒尺寸对FSW接头机械性能的影响。
通过梅尔德过程沉积的标本。在此图像中,可以看到底物和第一个沉积层之间的界面以及第一和第二沉积层之间的界面。有助于识别接口红色箭头以及两侧的绿色虚线。
经典的金属制造和连接涉及两种不同的途径:一条基于熔化和结合;其他利用塑性变形。要用所需的几何形状制造金属组件,配偶工程师可以加热并融化金属,将其倒入具有预定层形状的模具中,然后通过冷却使其在模具中凝固。这是铸造过程[1]。替代,当金属保留在固态中时,可能会将金属按或将金属锤成所需的形状。这是锻造过程[2]。在铸造更能产生较大且复杂的形状时,宽容会导致改善的机械性能,例如更好的延展性,更高的产量和拉伸强度以及较长的疲劳寿命。加入两个金属工件,材料工程师可以使用弧[3],煤气
摘要:这项研究通过搅拌铸造通过粉煤灰和碳化硅(SIC)钢筋的整合来探索基于铝的复合材料的进步。该过程涉及在700°C的消声炉中熔化合金,逐渐引入粉煤灰和SIC颗粒,同时在450 rpm搅拌12分钟以确保分散体均匀。添加5%SIC和2.5%的粉煤灰导致多种机械性能的显着改善。Tensile强度的显着增强大约增长了约19.56%,而硬度却显示出大约34.67%的大幅增长。此外,疲劳强度显着提高了约26.87%,耐耐磨性的显着增强约为31.45%。这些增强功能强调了整合粉煤灰和SIC钢筋的功效,突出了具有优质机械性能的晚期铝合作材料的潜力。这种方法提出了提高材料性能的有前途的途径,对需要耐用性,强度和耐磨性的各种工业应用产生了影响。
航空航天飞行面板必须提供低质量的高强度。对于铝面板,通常以锻造板开始并去除大部分材料以达到所需的结构,包括带有所需的钢筋肋骨模式的较薄板。作为替代方案,本研究实现了杂种制造,其中铝首先仅使用添加摩擦搅拌(AFSD)在肋骨位置沉积在底板上。然后使用结构化的光扫描来测量印刷几何形状。此几何形状最终用作计算机数值控制(CNC)加工的库存模型。本文详细介绍了由:AFSD组成的混合制造过程,以打印预成式的结构化光扫描,以生成库存模型和工具路径,三轴CNC加工以及零件几何和显微结构的后处理测量。©2023作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(https://creativecommons.org/licenses/by-nc-nc-nd/4.0)下的开放式访问文章。关键字:混合制造,添加摩擦搅拌沉积,结构化扫描,加工
全批 半批 5 磅(整箱)混合(8 杯)混合 40 盎司(5 杯)水,分开 20 盎司(2½ 杯)水,分开 23 盎司(3 杯)植物油 11½ 盎司(1½ 杯)植物油 1. 对于全批,将 24 盎司(3 杯)水放入搅拌碗中;对于半批,放入 12 盎司(1½ 杯)水。添加混合物。使用搅拌片,低速搅拌 1 分钟。 2. 改为中速;搅拌 3 分钟。改为低速,搅拌 1 分钟,同时逐渐添加油和剩余的水。 3. 刮擦碗和搅拌片。继续低速搅拌 3 分钟。 4. 将面糊倒入抹油或铺纸的烤盘中。
氮沸点仪................................................. 65 461 型简易液态 N 2 仪................................. 66 459 型低温恒温器............................................... 67 915 型平行管搅拌液浴................................. 68 - 69 785 型平行管搅拌液浴................................. 70 - 72 Orion 796 搅拌液浴.................................... 73 - 75 Hydra 798 搅拌液浴.................................... 76 - 78 813 搅拌冰/水浴.................................................... 79 820 型大容量校准浴.................................... 80 液体选择指南.................................................................... 81
摘要:在现代计算科学中,机器学习和优化过程之间的相互作用标志着最重要的发展。优化在机械工业中起着重要作用,因为它可以降低材料成本、减少时间消耗并提高生产率。最近的工作重点是对搅拌摩擦焊接工艺进行优化任务,以获得搅拌摩擦焊接接头的最大极限抗拉强度 (UTS)。为此选择了两种机器学习算法,即人工神经网络 (ANN) 和决策树回归模型。输入变量为工具转速 (RPM)、工具移动速度 (mm/min) 和轴向力 (KN),而输出变量为极限抗拉强度 (MPa)。观察到,在人工神经网络的情况下,训练和测试集的均方根误差分别为 0.842 和 0.808,而在决策树回归模型的情况下,训练和测试集的均方根误差分别为 11.72 和 14.61。因此,可以得出结论,ANN 算法比决策树回归算法提供更好、更准确的结果。
陶瓷金属复合材料具有重量轻、成本低、耐磨、耐腐蚀、强度高等特殊性能,是传统材料中颇具前途的先进材料。搅拌铸造是制造铝基复合材料成本最低、最简单的方法之一。搅拌铸造的主要局限性是增强陶瓷颗粒(团聚体)在金属基体中的分布不良、制造过程中复合材料的孔隙率以及陶瓷颗粒与熔融金属的润湿性。提高陶瓷金属基复合材料 (CMMC) 的搅拌铸造参数是许多研究的主要目标。本文将详细讨论搅拌铸造工艺,其中包括影响增强体均匀分布、制造过程中复合材料的孔隙率以及陶瓷金属基复合材料的力学性能的参数。
尽管个人不一定是暴力的,但很难重定向。 这种类型的搅拌类似于严重的搅拌,但通常对口服药理治疗和降低的反应更好。尽管个人不一定是暴力的,但很难重定向。这种类型的搅拌类似于严重的搅拌,但通常对口服药理治疗和降低的反应更好。