摘要:DNA-胶原蛋白复合物的不同方式主要用于基因递送研究。但是,很少有研究研究这些复合物作为生物活性支架的潜力。此外,尚无研究表征由自组装DNA宏结构和胶原蛋白的相互作用形成的DNA-胶原蛋白复合物。为了进行这项研究,我们在此报告了由序列特异性,自组装的DNA宏结构和胶原蛋白I的相互作用形成的新型生物活性支架的制造。DNA和胶原的变化导致高度相互交织的纤维骨架与不同的纤维厚度的高度相互交织的摩尔比。形成的支架是生物相容性的,并作为细胞生长和增殖的软基质表示。在DNA/胶原蛋白支架上培养的细胞促进了转铁蛋白的细胞摄取增强,并且进一步研究了DNA/胶原支架诱导神经元细胞分化的潜力。与对照组相比,DNA/胶原支架促进了具有广泛神经突的前体细胞的神经元分化。这些新型的,自组装的DNA/胶原支架可以作为开发各种生物活性支架的平台,并在神经科学,药物递送,组织工程和体外细胞培养中具有潜在的应用。
摘要:天然聚合物由于其内在的生物相容性和仿生性,已在很大程度上被研究为组织工程应用的脚手架材料。传统的脚手架制造方法提出了几个局限性,例如使用有机溶剂,获得非均匀结构,孔径的变化以及缺乏孔隙互连性。这些缺点可以根据使用微流体平台的创新和高级生产技术来克服这些缺点。液滴微流体和微流体旋转技术最近在组织工程领域中发现了可用于生产微粒和微纤维的应用,这些微粒和微纤维可以用作支架或三维结构的基础。与标准制造技术相比,基于微流体的技术具有多种优势,例如获得具有均匀尺寸的颗粒和纤维的可能性。因此,可以获得具有极为精确的几何形状,孔分布,孔相互连接性和均匀孔径的支架。微流体也可以代表一种更便宜的制造技术。在这篇综述中,将说明基于天然聚合物的微粒,微纤维和三维支架的微流体制造。还将提供其在不同组织工程领域的应用概述。
背景:右心室外流动(RVOT)支架似乎被认为是一种有前途的治疗选择,并且可以替代近年来Fallot型病变的患者最初贴calliation pallocked Blalock-Taussig分流(MBTS)。这项研究试图评估RVOT支架对法洛(Tetaloge)四曲(TOF)患者的肺动脉(PA)生长的影响。方法:回顾性审查分析5例Fallot型先天性心脏病患者患有小肺动脉,他们在9年内接受了rvot置于RVOT支架的姑息治疗,并接受了9例修改后的Blalock-Taussig分流。通过心血管计算机断层扫描(CTA)测量差异左PA(LPA)和右PA(RPA)生长。结果:RVOT支架增加了60%的中位数(四分位数范围[IQR]:37%至79%)的动脉氧饱和度,至95%(87.5%至97.5%)(P = 0.028)。LPA直径z-分数从−2.843( - 3.51 - 2.037)提高到-0.78( - 2.3305 - 0.19)(p = 0.03)(p = 0.03),RPA直径z-得分从中间 - 2.843( - 3.51 - 2.51 - 2.51 - 0.47)提高0.002),MC GOON比率从中位1(0.8 - 1.105)增加到1.32(1.25 - 1.98)(p = 0.017)。没有程序并发症,所有5例患者在RVOT支架组中进行了最终修复。结论:与MBT相比,RVOT支架似乎可以更好地促进肺动脉生长,改善动脉氧饱和度,并且由于高风险而被禁忌的TOF患者的TOF患者的手术并发症较小。In the mBTS group, the LPA diameter Z -score improved from − 1.494 ( − 2.242 – 0.6135) to − 0.396 ( − 1.488 – 1.228) ( p = 0.15), the RPA diameter Z -score improved from median − 1.328 ( − 2.036 – 0.838) to 0.088 ( − 0.486 - 1.223)(p = 0.007),并且有5例患者发生不同的并发症,没有达到最终手术修复的标准。
抽象巨噬细胞在炎症过程的开始,维持和过渡中至关重要,例如异物反应和伤口愈合。安装证据表明,物理因素还会在体外和体内调节巨噬细胞的激活。2D体外系统表明,将巨噬细胞限制为小区域或通道可调节其表型,并改变其对已知炎症剂(如脂多糖)的反应。但是,探索尺寸和孔径如何影响巨噬细胞表型。在这项工作中,我们研究了巨噬细胞限制在微孔退火颗粒支架(MAP)中时M1/M2极化的变化,这些粒子是由退火球形微凝胶产生的颗粒状水凝胶。我们设计了三种类型的地图凝胶,分别包括40、70和130 µm直径的粒径。颗粒大小,该输出分析了MAP凝胶中3-D孔的特性。由于构建块粒子的尺寸与最终支架内部的孔径相关,因此我们的三种脚手架类型使我们能够研究空间限制程度如何调节嵌入式巨噬细胞的行为。在空间上限制了骨尺寸的巨噬细胞在细胞尺度上的巨噬细胞导致炎症反应水平降低,这与细胞形态和运动性的变化相关。引言巨噬细胞是许多伤害和疾病的核心1。这些状态可以简化为从促炎(M1)到促育(M2)表型2,3的频谱。这个因素在典型的炎症事件中,巨噬细胞是最早到达并偏振各种激活状态以执行特定功能的巨噬细胞之一。通常,M1表型与炎症的启动和维持有关,而M2表型与炎症的分辨率和再生阶段4密切相关。除了在表型中及时过渡的内在分化途径外,巨噬细胞还适应了来自相邻细胞的微环境线索和居住在5的细胞外基质。其他细胞(例如IFN-γ或IL-4)分泌的生化因子可以将巨噬细胞引导到促炎或育次育进行表型6。这些常见可溶性因子背后的分子机制及其对巨噬细胞的影响已得到广泛研究。但是,物理信号调节巨噬细胞激活的机制的探索较少。在生物材料领域,研究人员已经测试了广泛的材料特性对巨噬细胞调节的影响,以追求更好的生物相容性。例如,通过增加亲水性来修饰表面修饰可减少巨噬细胞的附着,而用细胞结合配体进行装饰表面偏向巨噬细胞极化10-13。了解控制表型巨噬细胞变化的特定机械传输机制将指导未来的生物材料设计并获得深远的生理意义。空间限制是在组织或材料支架中调节巨噬细胞反应的众所周知的参数。地形设计将巨噬细胞迫使伸长的细胞形状被证明可促进促增再效的M2表型14。通过使用微图案表面,微孔底物和细胞拥挤来诱导空间限制,研究人员能够防止小鼠骨髓来源的巨噬细胞或RAW264.7细胞扩散,从而抑制晚期的脂多糖(LPS)晚期(LPS)相关的转录程序和细胞质的表达15。肌动蛋白聚合在狭窄空间内的巨噬细胞中受到限制,这降低了依赖于肌动蛋白的转录副因素,肌动蛋白相关的转录因子-A 15。
抽象背景:纯曲盘是膝关节的畸形,倾向于通过胫骨股关节过度扩展向后推动它。由于技术困难和复发率很高,这构成了重大挑战。膝盖支括号用于改善真正的弯曲,但证据限制了其有效性。因此,这项研究的目的是研究改变修改后的双轴膝盖支架对真正的腹腔患者的过度伸展角和疼痛的影响。案例描述和方法:一个19岁的男孩被诊断为右侧的Recurvatum装有改良的双轴膝盖支架,以减少膝盖过度伸展角并减轻膝盖疼痛。分析了中侧X光片,以测量膝关节过度伸展角。在矫形器拟合2个月后,评估了受试者,并在GONIEMOMETER和疼痛的帮助下,在数字评级量表的帮助下检查膝盖过度伸展角度。结果:在膝盖过度伸展的人的修饰双轴膝盖支撑后,可能有助于减少膝盖和疼痛的过度伸展角度,同时提高步行能力。结论:修改后的双轴膝盖支撑是一种有效的膝盖支架,用于治疗真正的外载。然而,进一步的分析(包括更多的患者和修订后续研究对于概括本研究是必要的。关键词:真正的弯道,修改后的双轴膝盖支撑,NRS-11,疼痛。简介
聚合物血管生物可吸收支架 (BRS) 已广泛用于治疗冠状动脉疾病。而增材制造 (AM) 正在通过实现具有高度复杂结构的患者专用支架来改变医疗保健领域的格局。然而,使用聚合物 BRS 存在挑战,特别是支架内再狭窄 (ISR),与其较差的机械性能有关。因此,本综述的目的是概述在开发旨在满足机械和生物要求的聚合物 BRS 方面的最新进展。首先,重点介绍并简要描述了适用于 BRS 的生物聚合物以及形状记忆聚合物 (SMP)。其次,除了引入有效的机械超材料(例如负泊松比 (NPR) 结构)之外,还讨论了不同类型的血管支架设计结构。随后,讨论了目前用于制造聚合物 BRS 的 AM 方法,并将其与传统制造方法进行了比较。最后,针对实现新一代 AM BRS 所面临的现有挑战,提出了未来的研究方向。总体而言,本文为未来的心血管应用提供了基准,尤其是通过选择合适的聚合物、设计和 AM 技术来获得临床上可行的聚合物血管支架。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2025.02.11.637741 doi:Biorxiv Preprint
,已被称为超导二极管效应。效果的根源取决于对称性破坏机制。我们研究了NBN和NBN/磁绝缘子(MI)杂种的超导微桥。应用二极管效率为30%时,当施加了小至25 mt的平面磁场时。在NBN和NBN/MI杂种中,我们发现当磁场平行于样品平面时,二极管效应消失。我们的观察结果与涡旋表面屏障确定的临界电流一致。超导带的两个边缘的不等障碍导致二极管效应。此外,观察到矩阵的最高可达10 K,这使得基于二极管应用的设备可能在更大的温度范围内的设备潜力。
抽象基于支架的组织工程提供了一种有效的方法来修复子宫组织缺陷和恢复生育能力。在当前的研究中,通过4D打印,静电纺丝和3D生物打印的子宫再生设计和制造了与子宫组织相似的新型三层组织工程支架。高度可拉伸的聚(l-甲状腺素 - 三甲基碳酸盐)(plla-co -TMC,“ PTMC”简称)/热塑性聚氨酯(TPU)聚合物混合架架首先是通过4D打印制成的。为了改善生物相容性,在PTMC/TPU骨架上通过电启用产生了与聚多巴胺(PDA)颗粒掺入的多孔聚(PLGA)/明胶甲基丙烯酰基(GELMA)纤维。重要的是,将雌二醇(E2)封装在PDA颗粒中。因此产生的双层支架可以提供E2的受控和持续释放。随后,将基于3D生物启动的Bilayer Bioprine intrialsine rementers-uilare trirale trialer trialer trialeder trialder trialder infiral infiral inforials 与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。 这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。与明胶甲基丙烯酰基(GELMA)墨水(BMSC)混合,并使用配方式的生物介入来形成含细胞的水凝胶层,该水凝胶层通过Bilayer caffolds上的3D生物涂片上的Bilayer caffolds上的3D生物涂片进行了形式。这样形成的三层组织工程支架表现出形状的变形能力,当浸入37°C的培养基中时,从植物形状转变为管状结构。
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。