† QALY = 质量调整生命年:一种总结性结果指标,常用于卫生经济分析,量化特定干预措施的有效性,结合干预或治疗带来的质量和生命数量(即预期寿命)的提高的影响。‡ ICER = 增量成本效益比:成本效益分析的关键结果。计算方法是将总成本差异(增量成本)除以所选健康结果或效果指标差异(增量效果 - 通常表示为 QALY),得出“每增加单位健康效果的额外成本”比率 - 即较昂贵的疗法与替代疗法或对照疗法的比率。
。CC-BY 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2025 年 1 月 22 日发布了此版本。;https://doi.org/10.1101/2025.01.22.634222 doi:bioRxiv 预印本
摘要:风能是一种丰富的可再生能源,近年来在世界范围内得到广泛应用。本研究提出了一种新的基于多目标优化 (MOO) 的风能系统遗传算法 (GA) 模型。所提出的算法包括非支配排序,其重点是最大化风力涡轮机的功率提取,最小化发电成本和电池寿命。此外,还分析了风力涡轮机和电池储能系统 (BESS) 的性能特征,特别是扭矩、电流、电压、充电状态 (SOC) 和内阻。完整的分析是在 MATLAB/Simulink 平台上进行的。将模拟结果与现有的优化技术(如单目标、多目标和非支配排序 GA II(遗传算法 II))进行了比较。从观察结果来看,非支配排序遗传算法 (NSGA III) 优化算法提供了卓越的性能,特别是更高的涡轮机功率输出、更高的扭矩率、更低的速度变化、更低的能源成本和更低的电池退化率。该结果证明,与传统的优化工具相比,所提出的优化工具可以从自激感应发电机(SEIG)中提取更高的功率。
4 天前 — ...不是寻求与国防部签订合同的人。 警方已将该公司作为经营者或同等人员排除在公务员业务之外,其管理实质上受到黑社会组织或黑社会成员的控制。
四天前 - ...试图与国防部签订合同人。 (6) 其管理实质上由有组织犯罪集团或警察当局的有组织犯罪成员控制的企业或类似实体。,来自国家的订购业务等...
摘要 抑制性自突触是大脑中 GABA 能中间神经元中自我支配的突触连接。新皮质层中的自突触尚未得到系统研究,它们在不同哺乳动物物种和特定中间神经元类型中的功能知之甚少。我们研究了深部脑手术切除的人类新皮质组织 2/3 层 (L2/3) 中表达 GABA 能小白蛋白的篮状细胞 (pvBC),并以小鼠作为对照。大多数 pvBC 在两个物种中都表现出强大的 GABA A R 介导的自我支配,但在非快速放电的 GABA 能中间神经元中,自突触很少见。光学和电子显微镜分析显示 pvBC 轴突支配着自己的胞体和近端树突。 GABAergic 自我抑制传导在人类和小鼠 pvBC 中相似,并且与从 pvBC 到其他 L2/3 神经元的突触传导相当。自突触传导在 pvBC 中延长了尖峰后的躯体抑制并抑制了重复放电。在超颗粒新皮质的人类和小鼠 pvBC 中,周围躯体自突触抑制很常见,它们在那里有效地控制 pvBC 的放电。
典型的肌肉由数千条并行工作的肌纤维组成,这些肌纤维被组织成较少数量的运动单位。运动单位由运动神经元及其所支配的肌纤维组成,这里用运动神经元 A1 表示。支配一块肌肉的运动神经元通常聚集在一个细长的运动核中,该运动核可能延伸到脊髓腹侧的一到四个节段。运动核的轴突通过几条腹根和周围神经离开脊髓,但被收集到靠近目标肌肉的一个神经束中。在图中,运动核 A 包括支配肌肉 A 的所有运动神经元;同样,运动核 B 包括支配肌肉 B 的所有运动神经元。每个运动神经元(图中未显示)的广泛分支的树突往往与来自其他核的运动神经元的树突混合在一起。
b'假设 S i 是标准形式博弈 G 中局内人 i D 1; : : : ; n 的有限纯策略集,因此 SDS 1 : : : S n 是 G 的纯策略方案集,i .s/ 是局内人选择策略方案 s 2 S 时局内人 i 的收益。我们将在 S 中有支持的混合策略集表示为 SDS 1 : : : S n ,其中 S i 是在 S i 中有支持的局内人 i 的混合策略集,或者等价地,S i 成员的凸组合集。我们用 S i 表示除 i 之外所有局内人的混合策略向量集。如果对于每个 i 2 S i , i .si ; i / > i .s 0 i ; i / ,则我们说 s 0 i 2 S i 被 si 2 S i 强支配。如果对于每个 i 2 S i , i .si ; i / i .s 0 i ; i / ,且对于至少一个 i 的选择,不等式是严格的,则我们说 s 0 i 被 si 弱支配。请注意,一种策略可能不会被任何纯策略强支配,但可能被混合策略强支配。假设 si 对于玩家 i 是一种纯策略,使得玩家 i 的每个 0 i \xc2\xa4 si 都被 si 弱(分别强)支配。我们称 sia 为 i 的弱(分别强)支配策略。如果存在一个所有玩家都使用支配策略的纳什均衡,我们称其为支配策略均衡。一旦我们消除了每个玩家的劣势策略,结果往往是一开始不占优势的纯策略现在占优势了。因此,我们可以进行第二轮消除劣势策略。事实上,这可以重复进行,直到纯策略不再以这种方式被消除。在 \xef\xac\x81nite 游戏中,这将在 \xef\xac\x81nite 轮次之后发生,并且每个玩家总是会剩下至少一个纯策略。如果强(或弱)劣势策略被消除,我们称之为强(或弱)劣势策略的迭代消除。
这个博弈就是著名的囚徒困境,其中 C i 解释为玩家 i 与另一个玩家合作,而 D i 则背叛另一个玩家。这个博弈对人类的悲惨结局提供了深刻的解释(以及可能躲避厄运的复杂指示)。但是现在我们仅用它来介绍严格支配策略的概念。玩家 i 的策略 si 被另一个策略 s ′ i 严格支配,并且无论另一个玩家选择哪种策略,该玩家的预期收益都严格大于 si。例如,在囚徒困境中,C 1 被 D 1 严格支配:如果玩家 2 选择 C 2 ,则 C 1 的收益为 1 而 D 1 的收益为 2 ;如果玩家 2 选择 D 2 ,则 C 1 的收益为 - 3 而 D 1 的收益为零。因此,玩家 1 将选择 D 1 。同样,C 2 严格受 D 2 支配,因此玩家 2 会选择 D 2 。因此,尽管如果他们选择 (C 1, C 2),可能会得到 (1, 1) 的“双赢”结果,但两位玩家最终选择 (D 1, D 2),从而得到 (0, 0)。因此,我们得到 (D 1, D 2) 作为博弈的主导策略均衡。
三种不同的脑神经调节运动。脑神经 III、IV 和 VI。脑神经 III 支配上直肌和下直肌,使瞳孔上下移动。脑神经 VI 支配外直肌,使瞳孔向外拉,然后脑神经 III 支配内直肌,使瞳孔向内拉。通过这种方式,人们可以通过观察是大运动受损还是协调受损来区分影响神经或通路的病变。