摘要:该项目旨在开发一个旨在在室内环境(例如购物中心,公交车站和电影院)操作的自主垃圾机器人。机器人的主要目标是在浏览空间并避免障碍的同时检测和收集垃圾项目。利用传感器和图像处理技术的组合,机器人可以识别垃圾对象,并调整其在不误认为障碍物的情况下将其捡起的路径。通过采用具有成本效益的硬件组件和简化算法,我们旨在创建一个实用的解决方案,以解决公共空间中的垃圾污染,这证明了机器人技术在环境可持续发展方面的潜力。关键字:Raspberry Pi,垃圾检测,对象识别,避免障碍物,节点MCU,机器人,Arduino IDE
呼吸道感染,尤其是病毒感染以及其他外部环境因素,已显示出深远影响肺中巨噬细胞种群。尤其是,肺泡巨噬细胞(AMS)是呼吸道感染期间重要的前哨,其消失为招募的单核细胞(MOS)开辟了一个细分市场,以区分居民巨噬细胞。尽管这个话题仍然是激烈辩论的重点,但AMS的表型和功能在炎症性侮辱后重新殖民地殖民地的殖民地(例如感染)似乎部分取决于其起源,但也取决于局部和/或系统的变化,这些变化可能在表观遗传学水平上被划界。呼吸道感染后的表型改变具有长期塑造肺免疫力的潜力,从而导致有益的反应,例如保护过敏性气道侵入或对其他感染的保护,但与免疫病理发展相关时也有害反应。本综述报告了病毒诱导的肺巨噬细胞功能改变的持续性,并讨论了这种烙印在解释个体间和终生免疫变化中的重要性。
单粒子冷冻电子显微镜(Cryo-EM)已成为主流结构生物学技术之一,因为它具有确定动态生物分子的高分辨率结构的能力。但是,冷冻EM数据获取仍然是昂贵且劳动力密集的,需要大量的专业知识。结构生物学家需要一种更高效,更客观的方法来在有限的时间范围内收集最佳数据。我们将Cryo-EM数据收集任务制定为这项工作中的优化问题。目标是最大化指定期间拍摄的好图像的总数。我们表明,强化学习是一种有效的方法来计划低温EM数据收集,并成功导航异质的低温EM网格。我们开发的AP-PRACH,CRYORL,在类似设置下的数据收集的平均用户表现出了更好的表现。
宾夕法尼亚州匹兹堡 - 2025年2月10日 - 今天的库存情报解决方案收集AI宣布将通过Modalai的Voxl 2 Autopilot提供的新的US-MADE-MADE Starling 2 Logis无人机来增强其DJI无人机,用于客户仓库库存数据收集。此添加在第2季度2025中获得,将有助于仓库操作和创新团队最大化收集AI软件解决方案,以提高计数和应用程序灵活性。收集AI计算机视觉技术使无人机可以自主飞行,而无需GPS,WiFi或基础设施更改。机器学习算法分析库存图片,读取和解释远远超出了条形码,包括批号,文本,有效期,案例计数和占用信息。仓库运营商可以将其实时物理库存与仓库管理系统(WMS)数据进行比较,以进行最高准确性所需的任何更改。该解决方案最常用于第三方物流(3PL),零售分销,制造以及食品和饮料,但它
Baden-Württemberg的供水系统是德国最大,传统上最深远的供水之一。每年约有250个城市和市政当局提供约9000万立方米的饮用水。最高质量和高水平的供应安全性是区域供水管理中的中心阶段。在20世纪初,随着工业化的发展,中部内克地区的人口已经迅速增长。当时的一个非常遥远的计划是通过雷姆斯塔尔(Remstal)到斯图加特(Stuttgart)从乌尔姆市的多瑙河山谷(Danube Valley)带来饮用水。这为区域供水系统奠定了基础。
大脑计算机界面(BCIS)正在扩展到医疗领域,成为娱乐,健康和营销。然而,随着Con-Sumer神经技术变得越来越流行,由于脑电波数据的敏感性及其潜在的商品化而引起了隐私问题。对隐私的攻击已被证明,并且在脑对语音和大脑对象解码中的AI进步构成了一套新的独特风险。在这个领域,我们为第一个用户研究(n = 287)做出了贡献,以了解人们对神经技术影响的人们的神经保护期的预期和意识。我们的分析表明,尽管用户对技术感兴趣,但隐私是可接受性的关键问题。结果强调了同意的重要性以及对神经共享的有效透明度的必要性。我们的见解提供了分析当前隐私保护机制差距的基础,这增加了有关如何设计隐私尊重神经技术的辩论。
本文研究了用于定量末端链研究中使用的四种替代数据收集方法的方法之间的收敛有效性。基准方法是常规的APT方法(即纸笔方法),其中要求受访者指示产品属性与消费者的好处之间的现有联系(即ab),以及在征服和消费者价值(BV)之间。替代数据收集方法是口头访谈(VI),两种类型的综合访谈(CP和CR),每种访谈仅在AB和BV链接与受访者之间差的顺序相差。结果表明,未建立所有四种数据收集方法之间的方法之间的收敛有效性。但是,当将两种替代数据收集方法(特别是:CP和VI)与常规APT方法进行比较时,在某种程度上支持了方法之间的收敛有效性。唯一产生结果的数据收集方法(即consumer m-e-cs)与常规APT方法明显不同的是计算机访谈,其中AB和BV链接以(部分)随机顺序与受访者(即CR方法)。2005 Elsevier Ltd.保留所有权利。2005 Elsevier Ltd.保留所有权利。
已经确定,评估矿床的储层特性的标准方法是在矿床开发的技术文档开发中积累不确定性的来源。这项工作旨在开发一种改进的方法来评估矿床的收集者特性。提议将动作算法添加到确定样品的代表性体积,构建其三维模型并进行数字化的阶段。在最后阶段,使用Minkowski函数确定样品内部孔的连通性,以提高存款开发的项目文档质量。指南来改善评估存款的收集者特性的标准方法。使用改进的方法来评估矿床的储层特性会导致不确定性的较低程度,并有助于在其开发的设计阶段形成更可靠的储层作战情况。提出的研究将对外国承包商公司的工程人员有用,因为它证明需要收集其他核心材料并设置有关存款收藏家财产的信息的质量标准。
我们已经看到使用游戏来收集游戏以外的研究问题的数据本身,这是在研究本身之外的研究问题,称为游戏研究(Deterding等,2015)或基于游戏的方法(Slegers等,2016)。例如,经济学家长期以来不得不与他们无法进行真正的宏观经济实验的事实作斗争 - 政府也不会允许他们,也不能真正建立并比较两个相同的现实生活经济体。因此,像卡斯特罗诺娃,威廉姆斯,拉坦和基冈(2009)或Živić,Andjelković,Andjelković,Özden,Dekić和Castronova(2017)已经探索了基于经济性经济学的虚拟经济学,在MACRIEN上,在Maccrotect of MacCRAID上,已经探索了使用MacCRIEN的虚拟经济体的使用。现实世界。正在适应现有的,并创建了新游戏,例如实验室和在线实验(Hawkins,Rae,Nesbitt和Brown,2012; Oladimeji,Thimbleby,Curzon,Iacovides,Iacovides和Cox,&Cox,&Cox,2012年)。例如心理学和流行病学是重新修复游戏智能 - 现有娱乐游戏的大规模数据 - 回答基础研究问题(Devlin等,2014; Williams,Contractor,Poole,Poole,Srivastava,&Cai,&Cai,2011)。在人们的游戏中表现与诸如流畅智能(Kokkinakis,Cowling,Drachen和Wade,2017年)等游戏外的特征之间建立了密切的关系,他们建议游戏可以用作替代心理测量乐器。人类计算机互动(HCI)和其他领域的定性研究人员越来越多地使用板和纸牌游戏来构建用户和设计研究过程(Hannula&Harviainen,2016; Slegers等,2016)。所谓的公民科学游戏正在吸引成千上万的志愿者来众筹科学数据收集和处理任务,例如记录污染水平,分类星系图像或识别蛋白质折叠(Cooper,2015年)。
•ASTI调查是由IFPRI发起的,以响应经济合作与发展组织(OECD)国家(OECD)国家(OECD)国家和全球南部的大多数发展中经济体之间的差距•ASTI调查方法与Frascati手册的方法与OECD和合作伙伴开发的Frascati手册相吻合,从而确保了整理数据的时间。•ASTI的范围是农业研究和实验发展(R&D):“为了增加知识的库存而进行的创造性和系统性工作[...]并设计了可用知识的新应用”•农业R&D(ASTI采用):ASTI(由ASTI):作物,农作物,牲畜,牲畜,林业,森林,渔业,自然资源,自然资源和主要方面。农产品的农业存储和加工。