背景:随着 COVID-19 负担的加重,快速可靠的筛查方法势在必行。胸部 X 光片在快速分诊患者方面起着关键作用。不幸的是,在资源匮乏的环境中,训练有素的放射科医生很少。目的:本研究评估并比较人工智能 (AI) 系统与放射科医生在检测 COVID-19 胸部 X 光片发现方面的表现。受试者和方法:测试集包括三个月内 457 张疑似 COVID-19 肺炎患者的 CXR 图像。一位拥有 13 年以上经验的放射科医生和人工智能系统 (NeuraCovid,一款与人工智能模型 COVID-NET 配对的 Web 应用程序) 对 X 光片进行了评估。通过计算灵敏度、特异性和生成受试者工作特征曲线来比较人工智能系统和放射科医生的表现。RT-PCR 测试结果被用作金标准。结果:放射科医生的灵敏度和特异性分别为 44.1% 和 92.5%,而 AI 的灵敏度和特异性分别为 41.6% 和 60%。AI 系统将 CXR 图像正确分类为 COVID-19 肺炎的曲线下面积为 0.48,放射科医生为 0.68。放射科医生的预测优于 AI,P 值为 0.005。结论:放射科医生检测 COVID-19 肺部病变的特异性和灵敏度优于 AI 系统。
神经发育障碍(NDDS)涵盖以异常大脑发育为特征的疾病,这些疾病会影响认知,交流,行为和运动。这些疾病,包括自闭症谱系障碍(ASD),注意力/多动障碍(ADHD)和智力障碍,代表了一项重要的公共卫生挑战,影响了全球多达3%的儿童。尽管我们对这些疾病的理解取得了进步,但缺乏特定的疗法强调了进一步研究其病因和病理生理学的必要性。最近的研究确定了与NDD相关的许多基因变异,从单核苷酸变体到拷贝数变体。这些发现指向与NDD相关的各种不同基因,突出了这些疾病的遗传复杂性。然而,许多NDD的起源仍然未知,表明超出遗传变异的因素可能起着至关重要的作用。新兴证据表明,神经素的流量机制和环境因素,例如早期生命逆境,是NDD发展的重要贡献者。在人类和动物模型中整合分子,行为和神经敏化研究的多学科方法对于理解这些方面至关重要。本社论推出了一系列原始研究文章,旨在揭示NDD的复杂机制,并探索新型治疗策略的潜在途径。
尽管在过去几十年中取得了巨大进步,但治疗失败仍然是抗癌疗法的重大负担。肿瘤细胞倾向于通过克隆进化和抗性亚克隆的选择来逃避化疗,从而导致治疗复发。下一代测序旨在找到耐药性癌细胞串扰中有希望的候选变异。这种方法可能进一步有助于分子肿瘤板适应每个患者的靶向治疗方案(1)。髓增生性综合征慢性髓样白血病(CML)成为有效且成功的靶向治疗的榜样。cml是一种罕见的肿瘤,主要是由相互易位t(9; 22)(q34; q11)引起的,导致BCR :: ABL1融合基因的形成(2)。在许多情况下,它通过酪氨酸激酶抑制剂(TKI)成功治疗,尤其是与BCR :: ABL1激酶结合的2-苯基氨基嘧啶伊替尼,从而预防了下游靶标的磷酸化(3)。尽管总体10年生存率为83%,但在治疗的五年内,所有患者中有20%至25%遭受治疗衰竭(4,5)。第二代和第三代TKI,即尼洛替尼,达沙替尼,鲍苏替尼和庞替尼,开发了以可变成功的变化(6,7)克服这种抗药性(6,7)。TKI抗性发生在依赖性或独立于BCR :: ABL1激酶改变。第一个提及的主要是由BCR :: abl1中的突变引起的,例如ABL1 p。(Tyr253His),p。(GLU255VAL)或p。(THR315ile))防止TKIS与BCR或BCR expristion TKIS结合,以防止TKIS与BCR :: ABCR1 anbl1 anbl1 and anbl1 and anbl1fination and Overection(8)。对于BCR :: ABL1-独立抵抗力,讨论了几种机制,例如,药物过表达EF ef lox top子转运蛋白,尤其是ATP结合盒(ABC)转运蛋白转运蛋白家族成员P-糖蛋白(P-GP,P-GP,ABCB1)或乳腺癌抗癌蛋白(BCRP,ABCG2)的传播(abcg2)的demaption(p-gp,abcb1),abcg2 abcg2 ryaption(abcg2)。 10)。此外,显示遗传像差,例如第8条或影响RUNT相关转录因子1(RUNX1)的突变,显示出患者中爆炸危机或抗TKI耐药性克隆的进展(11,12)。除了临床研究外,体外模型还可以详细研究耐药性的机理。这样的模型是关键工具,因为这些模型从这些模型中得出的发现被成功地转化为诊所,例如预测药物效率并改善治疗方案(13)。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。 在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。 为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。 我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。 此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。
电离辐射计量中心摘要。放射性核素中子源为各种中子测量装置提供了一种产生标准中子校准场的便捷方法。需要知道源的以下属性才能表征某一点的场:总中子发射率、中子能谱以及发射强度随角度的变化。假设光谱随角度的变化对于大多数应用而言可以忽略不计。放射性核素中子源的总发射率可以在国家物理实验室 (NPL) 通过硫酸锰浴技术绝对测量,或通过慢化探测器进行比较测量。各种常用源的中子能谱可在公开文献中找到。本报告描述了 NPL 用于测量放射性核素中子源各向异性发射的方法。给出了相对于各种源类型和封装的圆柱轴的测量中子角分布。还给出了使用蒙特卡洛传输代码 MCNP 计算的分布,这些分布通常与测量的分布具有良好的一致性。
摘要 - RSNA-MICCAI 脑肿瘤放射基因组学分类挑战赛[1]旨在通过对多参数 mpMRI 扫描(T1w、T1wCE、T2w 和 FLAIR)进行二元分类来预测胶质母细胞瘤中的 MGMT 生物标志物[2]状态。数据集分为三个主要队列:训练集、验证集(在训练期间使用),测试集仅在最终评估中使用。图像要么是 DICOM 格式[3],要么是 png 格式[4]。使用不同的架构来研究该问题,包括 3D 版本的 Vision Transformer (ViT3D)[5]、ResNet50[6]、Xception[7] 和 EfficientNet-b3[8]。AUC 被用作主要评估指标,结果显示 ViT3D 和 Xception 模型都具有优势,在测试集上分别达到 0.6015 和 0.61745。与其他结果相比,考虑到任务的复杂性,我们的结果被证明是有效的。通过探索不同的策略、不同的架构和更多样化的数据集可以取得进一步的改进。
3 医疗保健系统和医疗设备面临网络入侵风险增加以获取经济利益 (2014 年 4 月 8 日),FBI 网络部门私营行业通知(网址为 https://info.publicintelligence.net/FBI-HealthCareCyberInpulsion.pdf)(最后访问时间为 2023 年 3 月 14 日)。
摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。
Jacob Bennett诉Harford County,Maryland,No. 38,9月学期,2022年。 法定解释 - 有资格成为哈福德县宪章第207条的哈福德县议会会员条,该宪章阻止了一名议会议员在州政府,哈福德县或哈福德县内的任何市政府持有就业,这并不能排除哈福德县教育委员会雇用的教师同时担任哈福德县议会成员。 查找宪章§207关于它是否适用于董事会的雇员,法院采用了一个有利于候选人资格解决歧义的建筑规范。 公共就业 - 不兼容的职位不兼容职位的学说并不排除哈福德县教育委员会雇用的老师,从同时担任哈福德县议会的成员。Jacob Bennett诉Harford County,Maryland,No.38,9月学期,2022年。法定解释 - 有资格成为哈福德县宪章第207条的哈福德县议会会员条,该宪章阻止了一名议会议员在州政府,哈福德县或哈福德县内的任何市政府持有就业,这并不能排除哈福德县教育委员会雇用的教师同时担任哈福德县议会成员。查找宪章§207关于它是否适用于董事会的雇员,法院采用了一个有利于候选人资格解决歧义的建筑规范。公共就业 - 不兼容的职位不兼容职位的学说并不排除哈福德县教育委员会雇用的老师,从同时担任哈福德县议会的成员。
摘要:叶酸受体-α(FR-α)在许多上皮癌中过度表达,包括卵巢癌、子宫癌、肾癌、乳腺癌、肺癌、结肠癌和前列腺癌,但在肾脏、唾液腺、脉络丛和胎盘等正常组织中表达有限。因此,FR-α已成为向FR阳性肿瘤输送治疗剂和成像剂的有希望的靶点。已经开发了一系列基于叶酸的PET(正电子发射断层扫描)放射性药物,用于选择性靶向FR阳性恶性肿瘤。本综述概述了迄今为止关于叶酸衍生的PET放射性结合物的设计、放射合成和用于靶向FR阳性肿瘤的效用的研究进展。本文主要介绍了用氟-18(t 1 / 2 = 109.8 分钟)和镓-68(t 1 / 2 = 67.7 分钟)标记的叶酸放射性结合物的结果,但也讨论了用“外来”和新 PET 放射性核素标记的叶酸,例如铜-64(t 1 / 2 = 12.7 小时)、铽-152(t 1 / 2 = 17.5 小时)、钪-44(t 1 / 2 = 3.97 小时)、钴-55(t 1 / 2 = 17.5 小时)和锆-89(t 1 / 2 = 78.4 小时)。对于肿瘤成像,迄今为止报道的 PET 放射性标记叶酸中,除了 [ 18 F]AzaFol 之外,没有一种完成了从实验室到临床的旅程,该药物在一项多中心首次人体试验中成功用于转移性卵巢癌和肺癌患者。然而,在不久的将来,我们预计会有更多基于叶酸的 PET 放射性药物的临床试验,因为临床对成像和 FR 相关恶性肿瘤的治疗越来越感兴趣。