s 2 ak遗憾的上限,其中s,a,k,h,t = kh和β分别代表状态,动作,情节,时间范围,总时间段数量和风险参数的数量。它与RSVI2(Fei等人,2021年)匹配,与新的分布分析有关,重点是回报的分布,而不是与这些回报相关的风险值。据我们所知,这是第一个遗憾的分析,即在样本复杂性方面桥接了DRL和RSRL。要解决无模型DRL算法中固有的计算算法,我们提出了一种带有分布表示的替代DRL算法。这种方法有效地表示使用重新定义的分布类别的任何有限分布。在保持既定的后悔界限的同时,它显着扩大了计算效率。
电池是对完整电动汽车(EV)的成本和环境足迹产生重大影响的组件。因此,有强大的动力可以最大化其利用率。用法限制由电池管理系统(BMS)执行,以确保安全操作并限制电池降解。限制往往是保守的,以说明电池状态估计的不确定性以及由于老化而导致的电池特性变化。为了提高利用率,需要对衰老敏感的电池管理。这是指管理策略,该策略是a)根据其状态调整电池期间的寿命,b)根据特定应用程序的要求平衡利用率和退化之间的权衡。在最新的电池安装中,仅测量了三个信号;电流,电压和温度。但是,必须估计的其他州(例如其最先进的(SOC)或局部浓度和潜力)对电池的行为进行了政府。因此,BMS依靠模型来估计状态并执行控制动作。为了实现点a)和b),必须在船上更新用于状态估计和控制的模型。更新的型号还可以实现诊断电池的目的,因为它反映了电池老化电池的变化。本论文研究了从操作EV数据中识别电化学和经验蝙蝠模型的鉴定。此外,IT研究了基于模型的最佳和自适应快速充电策略。工作分为四个主要研究。1)在驾驶数据上鉴定了经验线性参数变化(LPV)动态模型。模型参数是作为测得的温度,电流幅度和估计的开路电压(OCV)的功能提出的。处理电池电压响应的时间尺度差异,采用了连续的时间系统识别。我们得出的结论是,与离散和时间不变的对应物相比,所提出的模型具有较高的预测能力。2)对高阶电化学模型的参数进行了全局灵敏度分析。用实际电动汽车的测量电流曲线用作输入,并且评估了参数对建模细胞电压和其他内部状态的影响。研究表明,为了激发所有模型参数,需要高电流率,较大的SOC跨度以及更长的电荷或放电期的输入。这仅在电动卡车的数据集中存在,该电池组很少。来自带有更多包装(电动总线)和有限的SOC操作窗口(插电式混合动力卡车)的车辆的数据集激发了更少的模型参数。3)我们还投资了设计充电电流以增加其有关模型参数的信息内容,而不是使用驱动数据来参数化模型。这是在频域中作为最佳实验设计问题的提法。基于等效电路模型(ECM)状态优化了对衰老敏感的快速充电过程。最后,结合最佳快速电荷和
痴呆症患有路易体(DLB)被认为是阿尔茨海默氏病(AD)老年人退行性痴呆症的第二大最常见原因,并且在临床实践中区分这两种疾病可能具有挑战性。但是,准确的差异很重要,因为这两种疾病具有不同的预后,需要不同的护理。最近,一些研究报告说,神经素敏感的MRI可以检测Nigra pars compacta(SNC)中的神经变性。DLB患者被认为证明了SNC中多巴胺能神经元的变性和减少。因此,神经元素敏感的MRI可能对DLB的诊断有用。在这项研究中,我们旨在研究神经素敏感的MRI在区分DLB和AD中的有用性。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权所有,该版本发布于2024年2月12日。 https://doi.org/10.1101/2023.07.26.550718 doi:biorxiv Preprint
摘要 - 强化学习为机器人控制提供了一个吸引人的框架,因为它仅通过现实世界的互动才能纯粹学习表达政策。但是,这需要解决现实世界的约束并避免在训练过程中造成灾难性失败,这可能会严重阻碍学习进步和最终政策的表现。在许多机器人设置中,这相当于避免某些“不安全”状态。高速越野驾驶任务代表了对此问题的特别挑战性的实例化:高回报策略应尽可能积极地驱动驱动力,通常需要接近“安全”状态集的边缘,因此在该方法上承担特定的负担,以避免频繁失败。既学习高表现的政策,又避免过度失败,我们提出了一个增强学习框架,将对风险敏感的控制与自适应动作空间课程相结合。此外,我们表明我们的风险敏感目标会自动避免配备认知不确定性的估计量。我们在小规模的拉力赛上实施了算法,并表明它能够为现实世界中的越野驾驶任务学习高速政策。我们表明,我们的方法大大减少了培训过程中的安全违规数量,实际上导致在驾驶和非驾驶模拟环境中都具有类似挑战的驾驶和非驾驶模拟环境中的绩效策略。
背景于2023年4月推出了一个12个月的混合工作飞行员,以探索威尔士政府有效的长期混合工作状况。KAS的公司研究团队通过进行两项混合工作人员调查为飞行员提供了支持。最初的调查是在2023年7月进行的,随访于2024年3月。调查旨在在试点期间对员工混合工作行为,实践和经验的任何关键更改提供见解。问卷是由公司研究团队与混合工作协调小组和工会方协商的。以下报告是2024年3月调查结果的第一个输出。计划进行其他分析,例如,围绕旅行和办公室使用的调查结果。也可以选择提供更详细的见解,例如如果需要,人口统计组的进一步探索。该报告详细介绍了最近的调查(2024年3月)的主要发现,突出了以前调查的任何关键变化。它还在相关和有用的情况下借鉴了更广泛的见解,包括:
线粒体疾病(MDS)是最常见的遗传代谢性疾病组,由于广泛的基因型 - 表型异质性,诊断通常具有挑战性。MD是由核或线粒体基因组中的突变引起的,在核或线粒体基因组中,致病性线粒体变体通常是杂质的,通常在血液中的等位基因分数低于受影响的组织。现在可以使用整个基因组测序(WGS)轻松分析两个基因组,但是大多数核变体检测方法无法检测到线粒体基因组中低质质变体。我们开发了一种生物信息学管道,用于从WGS数据中检测,注释和解释杂质单核苷酸变体和插入/缺失变体。我们优化了从高线粒体DNA测序深度(> 3000 x)中准确检测的变体,这些变异是通过WGS从13个对照细胞系重复,10例患者和2,570个健康对照组中获得的血液获得的。MITH可以检测致病性线粒体变体,异质性范围从<1%到100%。通过广泛的变体注释,MITH可以轻松解释线粒体变体,并且可以将其纳入现有的诊断WGS管道中。WGS与MITH结合使用可以简化MD的诊断途径,避免侵入性组织活检,并提高线粒体疾病的诊断率以及线粒体功能受损引起的其他疾病。
由于其高灵敏度、低毒性、良好的空间和时间分辨率、发射可调、操作简单和非侵入性,它被广泛用于成像。6 用于缺氧成像的荧光探针通常以癌症标志物为目标,特别是与缺氧相关的还原酶。在缺氧肿瘤微环境中,还原酶(如偶氮还原酶和硝基还原酶)过度表达。偶氮基团是对偶氮还原酶敏感的部分,而硝基咪唑是对硝基还原酶敏感的部分。已经开发出各种小分子荧光团用于缺氧条件成像 7 然而,纳米材料由于增强的渗透性和保留 (EPR) 效应而能够实现被动肿瘤积聚和保留。8 这促使人们研究各种用于缺氧成像的纳米材料,9 但非常适合的共价有机框架 (COF) 却被忽视了。由于其纯有机性质、结构和功能可调性、以及可用于药物输送的多孔性,COF 是细胞状况成像的有力候选者。目前仅对少数 COF 进行了生物成像研究,其中细胞成像主要利用材料固有的荧光 10,11 或依靠共轭部分的荧光实现,例如染料标记的核酸 12,13 和荧光探针。14 关于使用 COF 对任何特定细胞状况进行成像的报道更是凤毛麟角。15 在此,我们设计并表征了一种具有硝基还原酶敏感部分的 COF,用于缺氧荧光成像。我们在 b -酮烯胺化学的帮助下合成了一种荧光 COF,16 并在合成后对其进行修饰,以结合硝基咪唑,用于靶向肿瘤缺氧条件下的硝基还原酶。 2-硝基咪唑衍生物是电子缺乏的化合物,已知可作为外源性缺氧标记物,经过生物还原活化后选择性地被缺氧细胞捕获(图 S1,ESI†)。17 由此获得的硝基咪唑 COF(NI-COF)在生理条件下稳定,在中性 pH 和肿瘤组织特有的酸性 pH 水平下均表现出有用的荧光特性,发射峰位于 480 nm(l ex = 420 nm)。利用其低细胞毒性,我们将 NI-COF 用作荧光成像
1个国家主要实验室,物理与电子科学学院,东中国师范大学,上海200241,200241,中国2,高力量激光与物理学的主要实验室,上海光学与精美机械学院,中国科学学院,上海学院计算成像,中心ÉnergieMat'eriauxt´el'Ecommunications,Institut National de la Recherche Scientifique,Varennes,Qu´ebec J3X1S2,加拿大5,加拿大5个数学科学学院,中国电子科学与技术大学,中国611731,CHENGDU 611731,611731,COMPROTIAN INNINNOV INNBERID CEMPRETINC 7东中国师范大学和山东师范大学,东中国师范大学,上海,200241年,联合研究中心科学和光子综合芯片
电力需求不断飙升,这不仅是由于人口和 GDP 增长,还因为气候变化的紧迫影响。本研究旨在通过预测美国佛罗里达州的月度用电量来解决未来电力需求的不确定性,同时考虑到不同的气候情景及其潜在影响。我们的方法包括利用度日法并构建基于历史数据的能源消耗回归模型。系统地分析了人口、就业、GDP、电价、温度和日照时间等关键变量。该模型是预测佛罗里达州住宅、商业和工业部门未来到 2050 年的电力需求的基本基础,同时考虑了不同的气候情景。在典型浓度路径 (RCP) 4.5 情景下,住宅部门预计从 2001-2019 年到 2050 年,电力需求将大幅增加 63%。在更极端的 RCP 8.5 情景下,这一激增将攀升至 65%。与此同时,预计商业和工业部门在 RCP 4.5 和 RCP 8.5 下的需求将分别增长 47% 和 54%。有趣的是,炎热夏季对制冷的需求增加超过了冬季对供暖需求的减少,尤其是在住宅部门。目前的可再生能源政策未能应对即将到来的气候驱动的电力需求激增。为了解决这个问题,我们建议实施可再生能源组合标准,旨在显著提高可再生能源在佛罗里达州电力结构中的比例。本文最后提出了一系列重要的政策建议,这些建议对于引导向可再生能源的可持续过渡以及有效管理极端高温对人们生活的影响至关重要。这些建议是应对气候变化带来的复杂挑战中不断变化的电力需求格局的战略路线图。