费率)•仅用于家庭状况的学费。没有用于海外学费的额外增长资金。关于胶质母细胞瘤(GBM)是一种致命且高度疗法的原发性脑肿瘤,没有足够的疗法。复发在很大程度上是不变的,起源于肿瘤细胞,这些肿瘤细胞渗透到外科手术切除缘,并在化学疗法和放射线上存活。尽管侵入性细胞在复发中起着核心作用,但目前对疾病的理解几乎完全来自对易于访问的肿瘤散装的分析,该肿瘤大体通常是在手术射击时常规收集的。但是,我们和其他人表明,边缘和散装细胞在功能和生物学上是不同的亚群。因此,根除复发需要更深入地了解利润率的独特生物学以及基于这种知识的新策略的发展。类似于许多转移性癌症,传统上,GBM入侵被视为肿瘤过程中的后期事件,转化的细胞首先形成肿瘤散装,然后从中散布。然而,来自小规模患者研究和我们在小鼠模型中的初步数据的新证据挑战了这一观点。这表明入侵可能是一个早期事件,这会导致在主要肿瘤大体发展之前播种边缘。理解保证金发展的本体论是对GBM进化的理解至关重要的,并且有潜力确定防止它或减少其复发的新型策略。
高功率电子设备(例如超级计算机)会产生相当大的热量。如果该热量未从设备的内部电路转移,则电路将过热并显着降低设备的寿命和可靠性。由量身定制的热特性所特色的热管理材料用于散发设备电路的热量。钻石(D)和铜(CU)是具有高热电导率(TC)的出色耗散材料。Cu/D复合材料由于其潜在的高TC和可调节的热膨胀系数,可将其用作下一代散热器材料。然而,Cu和C之间存在较弱的亲和力。已证明,Cu和D之间的碳化物形成金属层(例如W,Cr,Ti)已被证明是确保界面化学键合和增强TC的理想选择。在金属基质中集成的钻石颗粒的可加工性差使使用常规技术几乎不可能形成净形。添加剂制造能够制造具有类似于散装的特性的复杂锋利。在这项研究中,我们探索了使用选择性激光熔化作为3D打印技术的高效性能产生CU/D复合材料的可行性。通过光热辐射测量法测量与扫描和透射电子显微镜相互作用的表征相关的热电阻,是在CU和碳之间具有不同碳化物形成金属的多层模型材料上进行的。-这项研究的目的是1)提高对3D打印MMC的基本理解,以及2)通过界面/相间工程开发了CU/D复合材料改进的制造技术。
小胶质细胞是大脑中的常驻免疫细胞,在驱动神经炎症(神经退行性疾病的标志)中起关键作用。可诱导的小胶质细胞样细胞已被开发为用于分子和治疗假说产生和测试的体外平台。然而,没有系统地评估这些细胞与原代人小胶质细胞的相似性以及它们对大脑原代细胞期望的外部提示的反应。在这项研究中,我们通过散装和单细胞RNA测序对市售人类诱导的多能干细胞(IPSC)衍生的小胶质细胞(IPSC)细胞进行了转录表征,以评估其与原发性人类小胶质细胞的相似性。为了评估其刺激反应性,用肝X受体(LXR)途径激动剂处理IMGL细胞及其以散装和单细胞RNA测序为特征的转录反应。批量转录组分析表明,IMGL细胞具有与新鲜分离的人类原代小胶质细胞相似的总体表达谱,并表达许多关键的小胶质细胞转录因子以及功能和疾病相关的基因。值得注意的是,在单细胞水平上,IMGL细胞表现出不同的转录亚群,代表了正常和患病的原发性小胶质细胞中存在的稳态和激活状态。用LXR途径对IMGL细胞进行处理,激动剂会诱导脂质代谢和细胞周期的牢固转录变化。在单细胞水平上,我们观察到稳态和活化状态和激活状态的细胞亚群之间的响应异质性以及反应散装的表达会变化为其相应的单细胞态。总之,我们的结果表明,IMGL细胞表现出复杂的转录曲线和反应性,让人联想到体内小胶质细胞,因此代表了神经变性中治疗性发育的有希望的模型系统。
- 传代水平 - 血凝素和神经氨酸酶的特性 - 分析方案(包括种子批次的测试结果)* 3.2.S.2.4 关键步骤和中间体的控制 3.2.S.2.5 工艺验证和/或评估 - 单价批量: - 生产工艺菌株的具体变化 - 关键生产步骤的验证(新菌株) 1. 灭活 2. 分裂效率 3.2.S.3 特性(特性研究的选择,如粒度分布、聚集体的存在等) 3.2.S.4.1 规范(表格格式的已批准规范的副本) 3.2.S.4.2 分析程序 3.2.S.4.3 分析程序的验证(新菌株的 SRD 测试验证) 3.2.S.4.4 单价批量的批次分析结果:来自新主菌株的每个工作种子批次的前三个单价批量的结果(包括神经氨酸酶测试)新菌株的种子批次 - 每个工作种子批次均来自先前批准的主种子批次,其中工作种子批次的制备程序与批准的程序不同 3.2.S.7 药物物质:稳定性(活性物质的稳定性测试:使用一年以上的单价散装的结果)3.2.P.1 成分 3.2.P.2.2.1 药物开发:配方开发(实际配方(新季节菌株)和如果已要求临床试验来支持“年度”更新,则提供临床试验中使用的批次分析证书(如有)(第一步或第二步提交)3.2.P.3.2 批次配方(实际配方)3.2.P.5.1 规格(以表格形式复制批准的规格和常规测试分析方法)3.2.P.5.3 分析程序的验证;对新菌株进行 SRD 测试验证(使用三价散装或药物产品)3.2.P.8 药物产品:稳定性 - 上一季的稳定性数据 - 稳定性承诺 - 最终批次的批准后稳定性方案稳定性
昆虫识别和保存代金券标本是害虫诊断和监视活动不可或缺的;然而,由于捕获数量高以及样品对环境损害的敏感性,散装昆虫是诊断性的挑战。许多昆虫陷阱捕获依赖于物种鉴定的形态特征的检查,这是一项耗时且高技能的任务,因此需要更有效的分子方法。许多大量的DNA提取方法需要对样品进行破坏性采样,从而导致损坏或完全破坏的代金券标本。我们开发了一种廉价,快速,散装的DNA分离方法,该方法将标本保存为固定的保证金,该标准可以允许攻击后的形态检查和纳入昆虫参考收集中。我们的方案使用了一组暂时的昆虫来验证,这些昆虫耗时以识别大量的果蝇(双翅目:tephritidae:dacinae)。在开发我们的方法时,我们根据以下标准评估了现有方案:对形态的影响;适合大型陷阱捕捞的适用性;成本;易于处理;并应用于下游分子诊断分析,例如实时PCR和metabarcoding。我们发现,快速分离DNA提取的最佳方法是将蝇浸入NaOH:TE缓冲液在75°C中浸入10分钟,而无需蛋白酶K或洗涤剂。这种热索克方法产生了足够的高质量DNA,同时保留了适合物种水平鉴定的形态学特征,样品中最多20,000蝇。裂解物在下游分析中表现良好,例如环路介导的等温扩增(LAMP)和实时PCR应用,而对于元键块PCR,裂解物需要额外的柱纯化步骤。这种方法的开发是提高我们准确检测在散装陷阱中捕获的昆虫的能力所需的关键步骤,无论是生物多样性,生物安全还是有害生物管理目标。
*电子邮件:vasilyev@uta.edu摘要:我们描述了一种新颖的方案,用于在几种模式纤维中生成轨道 - 摩肌 - 输入光子。我们通过两个模式经典信号输入来实验验证基础模式间参数过程,观察到生成的惰轮的高模式纯度。OCIS代码:(190.4380)非线性光学元件,四波混合; (190.4420)非线性光学元件,横向效应; (060.4370)非线性光学元件,纤维; (270.5585)量子信息和处理。使用空间模式(例如,多模纤维和波导的模式)对于增加经典和量子通信的能力很重要。在量子情况下,以多个自由度(例如,在极化,频率,时间键和空间模式)中纠缠,可以实现依赖于高维希尔伯特空间中编码的量子信息的新的通信和网络协议。虽然已经以与光纤低损坏的运输相兼容的整合形式实施了两极分化,频率和时间纠缠,但空间纠缠仍然依赖于基于散装的基于基于晶体的设置,例如,空间或轨道 - 或轨道 - 或轨道 - 角度 - 角色 - (OAM)纠缠式的光子和晶体的晶体序列,并具有晶体式的晶体序列。几个模式纤维(FMF)[2]和涡流纤维[3]。fmf本身一直在基于模式间混合(IM-FWM)的非线性平台作为非线性平台,这是由于FMF的模式和分散工程的广泛选择,以及与低损失变速箱链路中使用的FMF的出色模式匹配。相关的光子对最近是由IM-FWM [4,5]在FMF中产生的,但尚未尝试过空间模式纠缠的尝试。我们最近使用两个IM-FWM过程的组合在FMF中直接在LP 01和LP 11模式中生成空间模式的光子对的新方案[6]。使用经典种子信号,我们实验证明了这两个过程的信号式模式选择性。在本文中,我们展示了如何使用该方案的修改来生成轨道 - 角摩肌键入光子对。
出生于1984年7月31日在科莫出生:已婚,两个子办公室:Polifab - Polifab - Politecnico di Milano的物理部,通过G. Colombo 81,20133 Milano电子邮件:Christian.rinaldi@rinaldi@polimi@polimi.it电话: 36545363200 Research ID: A-5686-2018 Web site: rinaldi.faculty.polimi.it/ I am an Associate Professor at Politecnico di Milano working on novel materials and phenomena related to spin-orbit physics ( spin-orbitronics ), research motivated by the willingness to exploit the spin of carriers in innovative electronic devices beyond CMOS.我从半导体Spintronics的博士学位开始了我的职业生涯。我探索了光旋取向和锗中旋转转运的物理。i开发了有效的自旋光二极管,通过自旋滤波来检测光螺旋的程度(adv。mater。2012)。作为捷克共和国物理研究所(T. Jungwirth教授)的客座研究人员,我通过对Cumnas进行开创性的研究为抗firomagnetic Spintronics的领域做出了贡献,为全电动读物和撰写反铁磁铁(Nature Commun。2013)。之后,我将精力投入到铁电性和自旋物理学的结合上,以寻求磁性或旋转传输的电气可控性。我为人工多表情的经典,非易失性的电力控制(自然公社2014,Adv。 电子。 mater。 2016)。 我撰写了对锗植也的第一次光谱研究(adv。 mater。 2016)。2014,Adv。电子。mater。2016)。我撰写了对锗植也的第一次光谱研究(adv。mater。2016)。我能够为开发自旋纹理的铁电剂作为铁电rashba半导体的发展设定独立的研究路径。i证明了这些材料允许对散装的散装式旋转纹理的前所未有的非挥发性控制(Nano Lett。2018)和硅兼容半导体中的自旋转换(自然电子2021)。这样的发现开放了一个全新的领域,并诞生了CMO之外的新设备,该设备能够进行记忆和基于旋转的计算,并在未来几十年的电子设备上具有超级功耗。
摘要:在散装的声学设备中,传统上,用于流体和微粒处理的声音共振模式在散装压电(PZE)换能器传统上受到激发。在这项工作中,通过三个维度的数值模拟进行了证明,这些模拟集成了PZE薄纤维胶片传感器,构成少于散装设备的0.1%的换能器,同样良好。使用经过良好测试且经过实验验证的数值模型进行模拟。嵌入在MM大小的散装玻璃芯片中的水上填充的直流通道,其用Al 0.6 SC 0.4 N制成的1- l m thick薄纤维传感器作为概念验证示例。计算了声能,辐射力和微粒聚焦时间,并证明与传统的散装硅玻璃设备相媲美,由大量的铅链氨基二硝酸盐传感器所代理的硅玻璃设备。薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。 因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。 v C 2021作者。 所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。 https://doi.org/10.1121/10.0005624薄纤维换能器在散装声音中产生所需的声学效果,依赖于三个物理方面:薄纤维换能器的平面内表达式在应用的原始电动电动机下,且元素的整个设备,并列出了通用的整个设备。构成设备的大部分部分。因此,薄片设备对薄膜传感器的Q因子和共振特性非常不敏感。v C 2021作者。所有文章内容(除非另有说明,否则都将根据创意共享归因(cc by)许可(http://creativecommons.org/licenses/4.0/)获得许可。https://doi.org/10.1121/10.0005624https://doi.org/10.1121/10.0005624
2025年3月5日早上好,董事长拉塔(Latta),排名成员卡斯特(Castor),董事长格思里(Guthrie),排名成员帕洛内(Pallone)和小组委员会成员。感谢您有机会作证。我今天以个人身份而不是代表杜克大学的身份来这里。我叫泰勒·诺里斯(Tyler Norris)。我是杜克大学尼古拉斯环境学院的詹姆斯·B·杜克大学(James B. Duke)研究员,我的博士学位研究重点是散装电力系统。我的研究得到了十五年的能源领域的经验,最近是美国领先的美国独立电力生产商Cypress Creek Renewables的开发副总裁,在那里我管理了一个多Gigawatt项目组合。我曾是国际能源咨询公司S&P Global Platts的董事,在那里我开发了电力市场的电力市场预测和集成专业的专业。在标准普尔之前,我曾是美国能源部的特别顾问,我在那里设计了技术商业化计划。我在这里作证说,如果我们对现有基础设施进行战略性使用,提供稳定的政策环境,并采取积极主动的方法来计划和投资长期的潜在客户资源,那么美国可以支持新的电力需求的有序集成。我的证词在我的研究中的一部分是作为最近研究的主要作者,重新思考负载增长:评估美国电力系统中大型柔性负载的潜力,该研究的潜力是2025年2月由杜克大学的尼古拉斯能源,环境和可持续发展的。今天我的证词将涵盖三个主题。1简而言之,我们的发现表明,新的大型电力客户的灵活性适度,现有的美国电力系统可以容纳大量的负载,而不会损害可靠性。鉴于按大规模开发新一代和传输所需的时间,我们已经在短期内利用我们已经拥有的基础架构将是必不可少的。灵活性措施可以提供一个至关重要的桥梁,购买时间和保存资本,同时计划和建造较长的资源。首先,我将讨论现有的美国电力系统如何快速整合大量新的电力负载,同时保持可靠性和负担能力。第二,我将审查加速新一代网格的机会。最后,我将概述这些措施如何购买时间并节省资本来扩大长期投资,包括扩大散装的传输扩展,清洁企业的发电和长期燃料的储能。