摘要:量子达尔文主义解释了量子宇宙中经典客观性的出现。然而,迄今为止,大多数关于量子达尔文主义的研究都集中在特定模型及其静态性质上。为了进一步理解量子到经典的转变,确定汉密尔顿量必须满足的一般标准以支持经典现实似乎是可取的。为此,我们对所有具有二体相互作用的 N 量子比特模型进行分类,并表明只有那些具有可分离的系统和环境相互作用的模型才能支持指针基础。我们进一步证明,“完美”的量子达尔文主义只有在没有环境内相互作用的情况下才能出现。我们的分析通过解决随后的动态问题得到补充。我们发现,在表现出信息混乱的系统中,经典客观性的动态出现直接与量子关联的非局部扩散竞争。我们通过对四个代表性模型的数值分析说明了我们的严格发现。
摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
计算机科学:编程原理 I/II、面向对象编程、数据结构、Web 编程、数据库系统概念、编程语言概述、软件工程 I、算法设计与分析、数据科学工具 数学:发展数学、中级代数(面授和在线)、大学代数(面授和在线)、三角学(面授和在线)初等统计学、微积分、线性代数、矢量力学、微分方程、数学建模与科学计算、中级分析、数值分析、密码学。其他:信仰与科学研讨会、三维打印、计算机能力 奖项与资助 Xcel STEM 教育资助 (2018 - 2024) - 33,500 美元 资助主任。该拨款为先锋创客学院提供支持,为初中和高中学生提供学习 3D 建模和打印的讲习班,以激发对 STEM 职业的兴趣 NOYCE 教师奖学金计划 - NSF(2022-2026) - 136 万美元
为了给舰载机的适航性提供参考,本文对尾喷流场及其对飞行甲板的影响进行了研究。首先建立了航空母舰和舰载机的几何模型,并在此基础上划分了非结构化四面体网格进行数值分析。然后,本文对4架舰载机在舰首准备起飞时尾喷流场进行了数值模拟,以评估其对喷气导流板(JBD)和飞行甲板的影响。分析过程中采用了标准k-ε方程、三维N-S方程和计算流体力学(CFD)理论。在求解方程时,还考虑了风和射流的热耦合。利用CFD软件FLUENT模拟给出了速度和温度分布。结果表明:(1)该解析方法可以用于模拟具有复杂几何模型的气动问题,且结果可靠性高;(2)通过分析可以优化安全工作区、JBD安装方案和起飞位置布置。
本文讨论了储能问题。这一重要问题与可再生能源的持续转型有关。液态空气储能 (LAES) 是一种适用于大规模储能的机械储能技术。本文介绍了一种通过将 LAES 与跨临界二氧化碳循环相结合来提高其效率的方法。为此,本文对两个 Kapitza LAES 系统与跨临界 CO 2 循环进行了数值分析:并联和后续模式。在这两种情况下,最大化 CO 2 压力都有助于提高整体效率。将余热引导至 CO 2 循环才是有利可图的。相反,在膨胀前降低空气温度以期为 CO 2 循环提供更多热量实际上会产生更糟糕的结果。并联系统实施可以将存储效率提高 5-6%,具体取决于其他因素。相比之下,后续系统只能将存储效率提高约 3.5%-5%。
本文介绍了一种基于紧凑模型的系统方法来建模热电模块(TEM)的技术。在Comsol软件环境中构建了毛皮电池的有限元模型。在材料参数对温度的依赖性的情况下,对TEM的特征进行了数值分析。基于对TEM的许多固定和非平稳问题的直接数值建模,已经构建和验证了一个紧凑的动态TEM模型。提出的方法有助于在各种边界和初始条件下使用控制单元和其他热元素的热电模块及其相互关系的建模。模拟结果与使用文献中描述的其他模型以及数值解决方案获得的结果非常吻合。基于数值实验,注意到,佩蒂尔电池对温度的物理参数的依赖性可能会扭曲TEM的输出参数,并在可能的情况下考虑在紧凑的模型中考虑。
移动地铁列车的场景模型可以帮助研究不同火灾位置对弯曲隧道中烟雾传播特征的影响。为此,这项研究采用了三维不稳定的雷诺,平均Navier-Stokes方程方法和重新归一化组的K-ε二方方程湍流模型具有浮力校正,以进行数值分析。使用滑网技术复制火车的运动。结果表明,当火灾在隧道中移动的火车上爆发时,活塞风会导致烟雾的纵向运动。如果与尾车相比,如果烟头回流的头部或中型汽车爆发,烟气回流的时间分别延迟了30 s或17 s。获得的结果为理性提供了理论上的基础,可以很好地控制地铁隧道中的烟气流量并减少火灾事故中的人员伤亡。
对Bogomolny-Prasad-Sommerfield(BPS)限制的不均匀的Abelian Higgs模型均针对相对论和非遗体主义制度研究了。尽管空间翻译的对称性因不均匀性而破坏,但延伸到N¼1超对称理论。四分之一的标量电势具有最小值,具体取决于杂质的强度,但在空间渐近线下具有破碎的相位。破碎相的真空构型既不是常数也不是标量电势的最小值,而是被发现是bogomolny方程的非平凡解。虽然其能量密度和磁场是由空间坐标的功能给出的,但能量和磁通量保持为零。磁杂质项的符号允许BPS扇区或抗BPS扇区,但不能同时进行。因此,所获得的溶液被确定为最小零能量的新型不均匀损坏的真空。在存在旋转对称的高斯类型不均匀性的情况下,还获得了拓扑涡流溶液,并且对杂质对涡流的影响进行了数值分析。
摘要 — 本文旨在研究人工智能、不同技术以及这些技术的实施,以解决与电气工程相关的问题,旨在提高准确性和效率。电力供应是经济增长和人民生活水平的指标。持续、可靠的电力供应是当今现代、先进社会运转的必要条件,而电力需求日益增加。电力系统的规划和运行旨在提供可靠和持续的电力。负荷流分析、安全性、稳定性、应急性、电压和无功功率控制是需要持续评估和监测的一些关键问题。用于评估和分析的实际常规方法是迭代的、不可靠的和耗时的。随着科技的发展,电力领域的研究工作已经从发电、输电、配电等不同问题的形式化数学数值分析方法转向了不太严格、不太繁琐、稳定、计算效率高、可扩展的人工智能技术。人工智能技术被视为一种模仿人类理性思考、处理信息以得出结论性结果的能力的努力。
该项目分为四个工作包。在第一个工作包中,根据 DLR 要求定义和记录了负载过程。在第二个工作包中,比较了不同复杂程度的数值模拟方法,重点是空气动力学方法,以及离散阵风和机动负载的分析方法。在第三个工作包中,比较了各种机身结构尺寸确定方法,并使用实验数据进行了验证。在第四个工作包中,负载过程的实施已应用于不同的用例 - 这些应用包括为运输飞机配置生成初步设计负载、对现有远程飞机的负载进行数值分析以及在两架飞机上进行飞行测试时测量负载,第一架飞机在滑翔机结构上,第二架飞机在高空研究飞机的外部货舱上。当前文章遵循 [2] 中给出的大纲。工作包 2、3 和 4 的工作在本文的后面进行了总结,并在单独的论文中进行了详细描述,请参阅 [3]、[4]、[5]、[6]、[7] 和 [8]。