具有吸收特性和不规则几何形状的系统对波的衍射和吸收是一个悬而未决的物理问题。同时,不规则吸收体已被证明非常有效�1�。一个更容易实现且密切相关的目标是理解包含不规则形状吸收材料的受限系统中的波振荡。从理论的角度来看,困难在于部分传播发生在波算子为非厄米的有损材料中。本文发现,在包含不规则形状吸收材料的谐振器中,出现了一种新型的局部化。这种我们称之为“跨”局部化的现象描述了这些模式同时存在于无损和有损区域的事实。它们都是有损耗的,并且与空气中的源很好地耦合。对声能时间衰减的数值计算表明,当吸音装置呈现非常不规则的形状时,其效果确实更好,而这与跨界局部化的存在直接相关。� 1 � 分形墙,Colas Inc. 产品,法国专利 N0- 203404;美国专利 10”508,119。
An analytical study is carried out to obtain the approximate solution for the Magnetohydrodynamic (MHD) flow issue of Darcy-Forchheimer nanofluid containing motile microorganisms having viscous dissipation effect through a non-linear extended sheet employing a new approximate analytical method namely Ananthaswamy-Sivasankari Method (ASM) and also修改的同义分析方法(MHH)。衍生的分析解决方案以显式形式给出,并与数值解决方案进行比较。图形结果被交织在一起,以反映问题中涉及的各种物理参数的效应。比较并在表中进行了比较并显示了Nusselt数字,局部皮肤摩擦参数和舍伍德数的数值计算。使用此策略获得更快的收敛速度。通过此方法获得的解决方案更接近精确的解决方案。另外,该解决方案是最简单,最明确的形式。它适用于所有具有非零边界条件的初始和边界价值问题。可以轻松扩展此方法以解决其他非线性高阶边界价值问题中的物理,化学和生物学科学问题。
本文重点介绍了确保由于支持部分的结构的错误几何形式而产生的长壁稳定性的困难。根据原位测量和数值计算,作者证明了与岩体的适当合作需要正确确定沿着冠层长度(比率)的液压支腿的支撑点,以及对电力屋顶支撑的盾构支撑的倾斜。缺乏这两个基本要素可能会导致屋顶下降,直接影响地下工作人员的生产结果和安全性。由构造的不正确几何形式产生的另一件事是在节点中产生的力值将冠层连接起来,将冠层连接起来,这可以做出重大贡献,以限制动力屋顶支撑的操作高度的实际范围(由于有能力的支撑与岩石支撑的相互作用)在造型支持的手术范围内提供了动力支持者的操作范围。在某些高度范围内,动力屋顶支撑的操作可能会阻碍,甚至在某些情况下阻止了动力支撑的操作员,移动盾牌并用适当的几何形状放置它们(确保在冠层和部分的地板之间进行并行性)。
金属增材制造 (MAM) 是一项快速发展的技术,有可能彻底改变制造业。当前的 MAM 工艺之一是直接能量沉积 (DED),它使用逐层沉积来设计零件以进行整合并最大限度地减少材料浪费。然而,DED 工艺的反复加热和冷却通常会导致 AM 组件发生变形,从而导致过早失效。该研究利用数值计算软件 Simufact Welding 对利用 DED 工艺在 SS316 基材上增材制造的 Inconel 718 的热致变形进行了数值计算分析。Inconel 718 组件和 SS316 基材的几何设计旨在更深入地了解 LMD 工艺的变形行为。模拟结果表明,变形随层数的增加而增加,并且变形率沿沉积高度而变化。节点 S3 和 S5 处的基材变形在每一沉积层中均呈线性增加,但在最后四层中节点 S1 和 S2 处的变形速率降低,这表明基材和沉积材料之间的温度均匀性。
摘要:对应原理在量子力学中起着基础性作用,这自然会促使我们探究是否有可能在相空间中找到或确定量子态的接近经典类似物——这是经典和量子密度统计描述符的共同交汇点。本文通过研究在去除与给定纯量子态相关的 Wigner 分布函数所显示的所有干扰特征后出现的经典类似物的行为来解决此问题。因此,在两个四次振荡器在规则和混沌条件下非线性耦合的情况下,对连续变量二分系统进行线性和冯诺依曼熵的动态演化数值计算,并与相应的经典对应物进行比较。考虑了整个系统的三个量子态:高斯态、猫态和贝尔态。通过比较量子和经典熵值,特别是它们的趋势,表明这些熵不是纠缠产生,而是为我们提供有关系统(量子或经典)离域的信息。这种信息的逐渐丢失意味着量子和经典领域的增长,这与双方自由度之间相关性的增加直接相关,在量子情况下,这通常与纠缠的产生有关。
摘要。在本文中,我们探讨了使用文字计算 (CWW) 系统和基于 CWW 的人机界面 (HCI) 和交互实现高效计算和 HCI 的可能性。所选应用用于展示问题和潜在解决方案,该应用是在自动驾驶的背景下。要解决的具体问题是,由人类文字命令指示的机器使用 CWW 执行将两辆有人或无人驾驶汽车停放在双车位车库的任务。我们将交互过程分为两个步骤:(1) 可行性验证和 (2) 执行。为了完成任务,我们首先验证可行性,包括评估车库是否空置、检查大致尺寸、检查不规则形状,以及根据大小、车辆类型、汽车是否载人所需的可接受公差范围以及防撞方法对需要停放的汽车进行分类。自动驾驶部分的执行由传感非数字模糊信息控制,这些信息指示与墙壁或障碍物的距离。执行算法使用一系列驾驶指令,旨在以简单有效的方式利用可用空间,而无需借助复杂的数值计算,例如确保汽车距离墙壁 2 英寸以内。对系统及其可用性进行了定性分析。分析表明,该方法具有减少
该博士的上下文。项目是对电化学储能系统的研究,尤其是锂离子和钠离子电池。具有强大而准确的模型来预测健康状况(这是电池初始规格的电池降低的指标),并且充电状态对于构建可靠的电池管理系统(BMS)至关重要,出于安全原因和性能控制。许多不同的功能会影响电池在操作过程中的性能,即重复充电和放电周期。电极中活性材料的化学组成和该材料的几何结构都对初始行为和降解过程的动力学都产生了巨大影响,从而导致性能下降。这些特征的效果以微观电极刻度表达(即孔的比例),如果有的话,几乎无法实验地探索。由于这些原因,设想数值计算流体动力学(CFD)模拟以研究不同电极组成和几何结构的影响。虽然非常准确,但CFD模拟在计算上非常昂贵:由于这些原因,它们可以有效地用作优化制造过程的工具,但不能用作快速的智障模型,从而提供瞬时预测,以帮助监视和控制BMS。由于这些原因,还将基于数值和理论上尺度的技术来开发上刻度的模型,分别通过基于神经网络的替代模型的构建和宏观>
摘要 我们提出了一个计算流体动力学 (CFD) 框架,用于对 3D 打印中的激光金属沉积 (LMD) 过程进行数值模拟。该框架综合了数值公式和求解器,旨在提供足够详尽的过程场景,其中载体气体被建模为欧拉不可压缩流体,在 3D 打印室内传输金属粉末,这些粉末被跟踪为拉格朗日离散粒子。基于来自激光束和加热基板的热源,开发了粒子模型,使其也通过热传递与载体气体相互作用,并根据粒子液体质量分数的增长规律在熔化相中演变。采用增强型数值求解器,其特点是改进的牛顿-拉夫森方案和用于跟踪粒子的并行算法,以获得数值策略的效率和准确性。从研究整个 LMD 过程的优化设计的角度出发,我们提出了一种敏感性分析,专门用于评估流入速率、激光束强度和喷嘴通道几何形状的影响。此类数值计算是使用 deal.II 开源有限元库开发的内部 C++ 代码执行的,并可在线公开获取。
我们报告了对介观状态下克尔振荡器的驱动耗散动力学的第一原理研究。该状态的特点是具有较大的克尔非线性,这里使用大量约瑟夫森结的非线性动力学电感来实现。结阵列模式的实验测量的非线性共振线形与稳态数值预测存在显著偏差,并且需要时间相关的数值模拟,这表明由于阵列模式之间的巨大交叉克尔效应,系统中存在强烈的测量诱导失相。切换速率的分析和数值计算证实了这一点,因为它显示了慢时间尺度的出现,该尺度比线性衰减速率长得多,并且由双稳态状态下的波动诱导切换时间设定。此外,我们的分析表明,通常的量子激活逃逸处理不足以预测强非线性引起的大频率偏移下的切换速率,因此需要利用全系统 Liouvillian 进行量子处理。根据我们的分析,我们确定了一个通用交叉参数,该参数分别描述了半经典和量子描述的有效性范围。我们的工作表明,强非线性系统中的动态切换效应如何为研究量子到经典的转变提供独特的平台。
量子计算,即操纵量子物理系统进行数值计算,有望显著加快许多科学问题(包括经济学问题)的解决速度。然而,实现量子加速不仅仅是将经典算法转化为量子等效算法。1 一般来说,这是不可能的。即使可能,也不会带来计算收益。相反,实现量子加速需要构建完全不同的算法,利用叠加、纠缠、干涉和隧穿等量子现象。为了应对这一挑战,我们提出了一组新颖的算法,用于在量子退火器 (QA) 上解决动态规划问题(例如经济学中出现的问题)。这种专门的量子装置使用物理过程执行组合优化。QA 将问题的参数嵌入量子系统中,该系统会演化以找到其最低能量配置。这相当于确定全局最小化损失函数的状态变量值(Farhi 等人,2000 年)。QA 试图解决传统计算机无法解决的 NP 问题,从所有状态的线性组合(量子叠加)开始,并在几毫秒内返回候选解决方案,而不管问题大小(Venegas-Andraca 等人,2018 年)。更具体地说,我们的论文做出了三个关键贡献: