摘要:卫星系统功能密度与复杂度的不断提升、恶劣的航天环境以及减少操作人员参与的成本控制措施,都日益推动着对故障诊断与健康监测(FD-HM)新方法的开发需求。数据驱动的FD-HM方法利用信号处理或数据挖掘获取系统运行状态的隐含信息,有利于对系统进行粗放而浅显的监控,有望减轻操作人员的工作负担。然而,这些卫星系统FD-HM方法主要以历史数据和一些静态物理数据为驱动,很少考虑仿真数据、实时数据以及二者之间的数据融合,不能完全胜任卫星在轨的实时监控与维护。为保障复杂卫星系统的可靠运行,本文提出了一种新的FD-HM物理-虚拟融合方法——数字孪生。此外,我们提出了卫星电力系统的 FD-HM 应用,以证明所提方法的有效性。
摘要 在数字孪生使能应用开发过程中,由于缺乏对数字孪生术语、架构和模型相关标准的参考,导致用户对数字孪生的理解存在差异,难以实现不同企业或领域之间数据、模型和服务的互联互通。因此,数字孪生作为跨多领域互操作的本质,需要以标准化作为先导。本文基于数字孪生五维模型,介绍了数字孪生技术的背景及发展情况,介绍了数字孪生标准化的最新进展,分析了未来数字孪生标准化面临的挑战并提出了建议。对数字孪生标准格局的分析综合了国际标准化组织(ISO)、国际电工委员会(IEC)、国际电信联盟(ITU)、电气电子工程师协会(IEEE)等管理机构的信息。
就本文讨论的制造业数字孪生而言,这一概念直到 2005 年才出现在文献中 1 。本文甚至提到了物联网领域,将其称为“增强物理对象网络”。Grieves 在 2016 年讨论了数字孪生的起源 2 。作者声称,他们对“PLM 的概念理想”的表述本质上是原始的数字孪生概念,只是没有名称。他将其称为“镜像空间模型”,直到 2011 年才将其称为“数字孪生”。但是,其他类似术语也可以使用“不同名称”的说法。(例如,信息物理系统)。
摘要。鉴于数字孪生概念的新颖性及其所基于的广泛技术,确定数字孪生项目范围的过程对于流程制造公司来说可能是一项艰巨的任务。当前文献缺乏对流程制造环境中数字孪生范围确定过程的研究。本文通过引入流程制造业中数字孪生范围的框架来解决这一空白。该框架基于现有文献和国际流程制造公司获得的经验。所提出的框架旨在解决流程制造业公司在确定数字孪生项目范围时需要面对的关键挑战。因此,该框架分为四点:(1)确定关键利益相关者及其要求,(2)构建块定义,(3)选择要孪生的资产,以及(4)用例开发。通过解决这些问题,可以显著减少开发数字孪生所需的时间和资源。
摘要 城市生态系统数字孪生的开发越来越受欢迎,是世界各国数字化发展的主流。如今,国内已经在开发数字孪生,包括城市生态系统。本文的目的是从理论上描述城市数字孪生的本质,并概述现有的用于创建城市生态系统数字孪生的平台,以确保人口的生活质量。研究目标:确定创建数字孪生的先决条件;在现有理论类比的背景下确定数字孪生定义基础的本质;描述俄罗斯和世界创建城市生态系统数字孪生的概念基础,确定它们的发展对维持人口生活质量的优势;提出开发和运行城市生态系统数字孪生的方法论;对用于开发城市生态系统数字孪生的数字平台和技术的能力和功能进行比较分析;对国内外现有的城市生态系统数字孪生进行比较分析,研究结果获取了国内现有的城市生态系统数字孪生发展平台和技术的数据,并对其在城市生态系统数字孪生发展中的应用进行了探讨。
实景网格模型,是由均匀的三角形表面组成的模型。网格本身是指几何模型的呈现,可以通过三角形、正方形或多边形的均匀网络来实现。在本项目中,创建了一个三角网格模型。三角网格模型由三角形的平面组成,而三角形又由面和顶点组成。每个平面的顶点(后面称为连接点)也属于相邻的平面,因此整个三角网格形成一个均匀的表面。三角网格结构如上所示。网格模型是对实际物体形状的近似,具有一定的精度。实景网格形状的精度取决于三角网格网络的密度,从而取决于三角形的大小。模型中的三角形越小,模型越具体。
摘要 - 如今,这是一种普遍趋势。尤其是对于居住在城市地区的人们来说,驾驶此类车辆已成为一种时尚。现在,公司甚至希望推出吸引年轻一代的此类车辆。这可以通过称为 DTSi 的技术实现。由于 DTSi(数字双火花点火)系统,可以将强大的性能和燃油效率结合起来。改进的发动机效率模式也降低了油耗。只需增加燃料点火元件的数量,即可提高这些小型发动机的效率并增加功率输出。火花塞。火花点火是发动机最重要的系统之一。火花正时和每分钟火花数的任何变化都会严重影响发动机性能。因此,良好的系统参数设计和控制对于发动机的最佳性能至关重要。由于采用了数字双火花点火系统,可以将强大的性能和更高的燃油效率结合起来。与传统的机械火花点火系统相比,DTSi 具有许多优势。在本文中,我们将了解机电一体化在仪器仪表中的用途。传统发动机在其发动机中使用单个火花塞来点燃燃料和空气的混合物。但是为了更有效地燃烧混合物以增加功率输出并减少未燃烧混合物的浪费,火花塞的数量增加了一倍,以便有效地燃烧混合物。两个火花塞有助于从两个方向点燃燃料,而不是像传统发动机那样从一个方向点燃燃料。这项新技术被称为“双火花点火系统”。尽管这种技术趋势被证明是足够的,但一种新的改进的点火系统诞生了,并被命名为“三火花技术”,涉及使用三个火花塞,而不是一个或两个。
报告介绍了建筑环境中的数字孪生概念。报告指出,数据和以这些数据为基础的模型对于构建数字孪生至关重要。根据建模方法,模型分为白盒、灰盒和黑盒模型,根据建模问题,分为正向和反向模型。报告解释了这些模型中的每一个,以阐明如何根据可用数据和要实现的目标类型选择模型。目标可以是性能预测、参数估计、控制、优化和故障检测和诊断。报告的下一部分简要介绍了参数估计模型。参数估计模型本质上是灰盒模型。它们在做出改造决策时很有用,因为它们有助于描述现有房屋的特征,并检查拟议改造方案的有效性。报告阐明了数据选择和热网络配置选择如何影响估计参数。它还进一步解释了为什么需要详细测量来验证参数估计模型。报告的最后一部分简要描述了行为模型、实施这些模型的挑战以及将它们纳入其中以缩小性能差距的重要性。该报告包括来自科学文献的几个行为模型示例,重点介绍了所使用的数据、建模方法和居住者行为研究
利用 ANSYS 多物理仿真平台执行耦合分析。通过 ANSYS Workbench 耦合热分析和电磁分析,使用 Maxwell 和 Mechanical 平台。为了对结果进行基准测试,开发了发电机的简化热电路。此后,开始了对 ModHVDC 发电机的数字孪生监控工作。研究并测试了多学科 ANSYS 数字孪生概念 Twin Builder 的可能性和应用。模拟结果用于创建与发电机速度和温度相关的 FMU,类似于之前对 GE Haliade 风力涡轮机和 PTC 电动机所做的工作。最后,研究并测试了 NX Nastran 中的热求解器 SOL 153/159,以用于类似项目。
结构计算表示的一个强大新想法是数字孪生。数字孪生的概念在过去二十年中出现和发展,并被许多行业视为一种备受期待的技术。目前的情况是,各个公司通常对数字孪生有自己的定义,尚未达成明确的共识。特别是,目前没有数字孪生的数学公式。与当前论文配套的论文将尝试介绍所需公式的基本组成部分。其中一个组成部分被确定为模型的严格表示理论、如何验证模型以及如何在模型之间传输验证信息。本文将概述这种理论的基本要素,基于两个新概念的介绍:镜像和虚拟化。本文并非被动地列出愿望清单,而是发出号召。新理论需要多个领域的研究人员积极参与,包括纯数学和应用数学、物理学、计算机科学和工程学。本文概述了该理论的主要目标,并给出了可能在新框架中得到证明的定理和假设的例子。