1性别因素5000 2 0 0 2人的年龄,2011年数字5000 79 0 0 3年龄段,2011因子5000 7 4 0是是。。。7的EDUSPEC纪律完整资格因子5000 28 20 0是。。。10 income Personal monthly net income numeric 5000 407 683 603 11 marital Marital status factor 5000 7 9 0 12 mmarr Month of marriage numeric 5000 13 1350 0 13 ymarr Year of marriage numeric 5000 75 1320 0 14 msepdiv Month of separation/divorce numeric 5000 13 4300 0 15 ysepdiv Year of separation/divorce numeric 5000 51 4275 0 .。。22 Nofriend的朋友数字数字5000 44 0 41 23吸烟烟因子5000 3 10 0 24 Nociga每天抽烟数字5000 30 0 3737是的。。。27在2007 - 2011年出国工作的工作塔因子5000 3 438 0 28 WKABDUR在国外工作的总时间5000 33 0 4875是。。。33人数的高度5000 65 35 0 34人数重量的重量5000 91 53 0 35 BMI体重指数(重量-kg/(高度-cm 2)*10000)数字5000 1396 59 0是是是是是
简介3什么是数据策略?3为什么要数据策略?3数据策略和人工智能4理解数据策略5数据策略5 1。防御5 2。进攻6从数据创造价值:四个角度 - 价值创建框架8开发成功的数据策略路线图 - 导航数据驱动的未来9个关键阶段,用于开发数据策略路线图9 1。定义数据目标以与业务目标保持一致9 2。评估并绘制当前数据格局10 3。拥抱数据治理10 4。数据收集和集成10 5。数据管理,存储和基础架构10 6。实施,执行和更改管理10 7。衡量和优化11构建有效的数据治理计划12数据治理和治理框架12步骤构建有效的数据治理计划13 1。安全的执行支持和所有权13 2。定义数据治理策略/目标13 3.建立数据治理团队13 4。评估当前数据资产和数据实践14 5。评估数据管理成熟度14 6。创建数据治理过程14 7。建立数据管家社区14 8。数据治理工具15 9。监视,测量和改进15个下一步15
•引起皮肤刺激。•可能会引起嗜睡或头晕。•可能导致遗传缺陷。•可能导致癌症。•可能会损害未出生的孩子。环境危害:•对水生生物有毒,具有持久的影响。预防性陈述:预防:•使用前获取特殊说明。•在阅读和理解所有安全预防措施之前,请勿处理。•远离热量/火花/露天火焰/热表面。- 没有吸烟。•将容器紧密关闭。•保持冷静。•地面/债券容器和接收设备。•使用防爆炸的电气/通风/照明/设备。•仅使用非扇形工具。•采取预防措施,以防止静态排放。•避免呼吸灰尘/烟气/烟气/雾/蒸气/喷雾。•处理后彻底洗涤。•仅在户外或通风良好的区域使用。•避免释放到环境中。•戴防护手套/防护服/眼部保护/面部保护。•根据需要使用个人防护设备。响应:•如果吞咽:立即致电毒药中心或医生/医师。•如果在皮肤上:用大量的肥皂和水洗涤。•如果吸入:将人移至新鲜空气并保持舒适呼吸。•如果暴露或相关:获取医疗建议/注意。•特定的治疗方法(请参阅此标签上的医师注释)。•不要引起呕吐。•如果发生皮肤刺激:获得医疗建议/注意。•收集溢出。•脱下污染的衣服并在重复使用之前将其洗涤。•在火灾的情况下:使用SDS中指定的媒体熄灭。存储:•存储在通风良好的地方。保持容器紧密关闭。•存储已锁定。处置:•根据适用的本地/地区/国家/国际法规处理内容/容器。危害未分类:不适用
2 Public Works Department, Faculty of Engineering, Cairo University, Giza12613, Egypt amr-m.eldemiry@polyu.edu.hk , muhammad.muddassir@polyu.edu.hk , tarek.zayed@polyu.edu.hk Abstract – In this paper, we propose a ground mobile robot that can perform both surface mapping and subsurface mapping using三维激光雷达同时定位和映射系统(3D激光雷达大满贯系统)和地面穿透雷达(GPR)。机器人由配备3D激光雷达传感器的移动平台和安装在固定机箱上的GPR天线组成。机器人可以自主浏览环境并从表面和地下收集数据。表面映射是通过使用±3 cm范围精度的3D激光镜传感器来观察地形的点云,然后对其进行处理以生成3D表面图。地下映射是通过使用GPR天线将电磁脉冲发射到土壤中并接收反射的,然后对其进行处理以生成3D地下图。然后,我们可以融合表面和地下图以获得地形的全面表示。我们在现实世界中(例如桥梁)演示了机器人的性能。我们表明,我们的机器人可以在表面映射任务和GPR数据采集中实现高精度和效率。
数据是AI开发的基石。AI经常使用从网络上刮下来的数十个数据点进行训练和微调,批量购买或由大量人类注释者贡献。知道用于培训模型的数据集中的内容以及如何编译它们,对于安全和负责的AI系统的开发和部署至关重要。AI数据透明度是指关于在整个AI生命周期3中如何使用数据的开放性,重点是上游数据组件:培训数据,微调,调整,参考数据和基准测试。4尽管具有数据的重要性,但大多数领先的AI公司一直不愿透露用于训练和测试其模型5的数据集的详细信息,这有助于称为“不断增长的数据透明度危机”。6斯坦福基金会模型透明度指数评估了提供许多AI工具和服务的骨干的主要基础模型,这表明与透明度7的其他方面相比,使用的数据透明度非常低。最近的ODI研究检查了媒体中强调的最近“ AI事件”链接的一系列模型的数据透明度,并确定了数据透明度信息的同样较低的存在,以及访问此信息的关键障碍。8
我们提出了EN3D,这是一种增强的生成方案,用于雕刻高质量的3D人体化身。Unlike previous works that rely on scarce 3D datasets or limited 2D collec- tions with imbalanced viewing angles and imprecise pose priors, our approach aims to develop a zero-shot 3D gen- erative scheme capable of producing visually realistic, ge- ometrically accurate and content-wise diverse 3D humans without directly relying on pre-existing 3D or 2D assets.为了应对这一挑战,我们引入了精心制作的工作流量,该工程实现了准确的物理建模,以从合成2D数据中学习增强的3D生成模型。在推断期间,我们集成了优化模块,以弥合现实的外观和粗3D形状之间的差距。特定于EN3D包含三个模块:一个3D发电机,可以准确地对可概括的3D Humans建模具有合成,多样和结构化的人类图像的逼真外观的可概括的3D Humans;几何雕塑家
人类情感识别一直是心理物理学和计算机视觉的重要主题。但是,经常发布的数据集有许多局限性。进行检查,大多数数据集都包含仅包含有关面部表情的信息的框架。由于以前的数据集的局限性,很难理解影响人类识别的机制,或者在这些数据集中训练的计算机视觉模型上对人类的识别良好。在这项工作中,我们介绍了一个全新的大型数据集,基于视频的情感并影响上下文数据集(VEATIC)中的跟踪,可以征服先前数据集的限制。Veatic在好莱坞电影,纪录片和家庭视频中有124个视频片段,并通过实时注释进行了连续的价和唤醒评级。与数据集一起,我们采用了一项新的计算机视觉任务,以通过每个视频框架中的上下文和字符信息来推断所选字符的影响。此外,我们提出了一个简单的模型来基准这项新的计算机视觉任务。我们还使用数据集与其他类似数据集进行了预处理模型的性能。实验显示了通过VEATIC验证的模型的竞争结果,表明VEATIC的普遍性。我们的数据集可从https://veatic.github.io获得。
在此编码中,国家石油,天然气和生物燃料(ANP)的重新计划在提供有关巴西陆地盆地的全面数据方面起着至关重要的作用。根据Ferreira和Oliveira(2021)的说法,对这些数据的开放访问对于可以改变该行业的技术创新至关重要。这项研究使用与NOSQL数据库集成的Python和Typescript中开发的软件加深了此数据的处理,Melo和Santos(2020)(2020)将这种方法识别为对大型数据的有效管理必不可少的方法。
